生物化学


分类

现刊
往期刊物
0 Q&A 481 Views Feb 5, 2024

Enzyme immobilization offers a number of advantages that improve biocatalysis; however, finding a proper way to immobilize enzymes is often a challenging task. Implanting enzymes in metal–organic frameworks (MOFs) via co-crystallization, also known as biomineralization, provides enhanced reusability and stability with minimal perturbation and substrate selectivity to the enzyme. Currently, there are limited metal–ligand combinations with a proper protocol guiding the experimental procedures. We have recently explored 10 combinations that allow custom immobilization of enzymes according to enzyme stability and activity in different metals/ligands. Here, as a follow-up of that work, we present a protocol for how to carry out custom immobilization of enzymes using the available combinations of metal ions and ligands. Detailed procedures to prepare metal ions, ligands, and enzymes for their co-crystallization, together with characterization and assessment, are discussed. Precautions for each experimental step and result analysis are highlighted as well. This protocol is important for enzyme immobilization in various research and industrial fields.


Key features

• A wide selection of metal ions and ligands allows for the immobilization of enzymes in metal–organic frameworks (MOFs) via co-crystallization.

• Step-by-step enzyme immobilization procedure via co-crystallization of metal ions, organic linkers, and enzymes.

• Practical considerations and experimental conditions to synthesize the enzyme@MOF biocomposites are discussed.

• The demonstrated method can be generalized to immobilize other enzymes and find other metal ion/ligand combinations to form MOFs in water and host enzymes.


Graphical overview


0 Q&A 939 Views Nov 20, 2022

Ion homeostasis is a fundamental regulator of cellular processes and depends upon lipid membranes, which function as ion permeability barriers. Ionophores facilitate ion transport across cell membranes and offer a way to manipulate cellular ion composition. Here, we describe a calcein quenching assay based on large unilamellar vesicles that we used to evaluate divalent cation transport of the ionophore 4-Br-A23187. This assay can be used to study metal transport by ionophores and membrane proteins, under well-defined conditions.


Graphical abstract:




0 Q&A 1472 Views Oct 20, 2022

Depending on its local concentration, hydrogen peroxide (H2O2) can serve as a cellular signaling molecule but can also cause damage to biomolecules. The levels of H2O2 are influenced by the activity of its generator sites, local antioxidative systems, and the metabolic state of the cell. To study and understand the role of H2O2 in cellular signaling, it is crucial to assess its dynamics with high spatiotemporal resolution. Measuring these subcellular H2O2 dynamics has been challenging. However, with the introduction of the super sensitive pH-independent genetically encoded fluorescent H2O2 sensor HyPer7, many limitations of previous measurement approaches could be overcome. Here, we describe a method to measure local H2O2 dynamics in intact human cells, utilizing the HyPer7 sensor in combination with a microscopic multi-mode microplate reader.


Graphical abstract:




Overview of HyPer7 sensor function and measurement results.


2 Q&A 1620 Views Oct 20, 2022

The ascorbate peroxidase (APX) is a widely distributed antioxidant enzyme. It differs from catalase and other peroxidases in that it scavenges/reduces reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) to water using reduced ascorbate as the electron donor. It is advantageous over other similar antioxidant enzymes in scavenging ROS since ascorbate may react with superoxide, singlet oxygen, and hydroxyl radical, in addition to reacting with H2O2. The estimation of its activity is helpful to analyze the level of oxidative stress in living systems under stressful conditions. The present protocol was performed to analyze the impact of heavy metal chromium (Cr) toxicity on sorghum plants in the form of APX enzyme activity under the application of glycine betaine (GB) and arbuscular mycorrhizal fungi (AMF) as stress ameliorators. Plant defense strategies against heavy metals toxicity involve the utilization of APX and the instigation of AMF symbiotic system, as well as their possible collaboration with one another or with the plant antioxidant system; this has been examined and discussed in literature. In this protocol, an increased APX activity was observed on underlying functions and detoxification capabilities of GB and AMF that are typically used by plants to enhance tolerance to Cr toxicity.


Graphical abstract:



Flow chart of standardized or calibrated enzyme assay with leaf samples of sorghum


0 Q&A 1287 Views Oct 5, 2022
The quantification of plant hormones and related gene expression is essential to improve the understanding of the molecular regulation of plant growth and development. However, plant hormone quantification is still challenging due to extremely low endogenous levels and high chemical diversity. In this study, we present a convenient extraction protocol that enables the simultaneous extraction of both phytohormones and RNA from the same sample in a small quantity (approximately 10 mg). Using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC–MS/MS), this protocol provides a method to quantify 13 phytohormones and their derivatives from four classes (cytokinin, auxin, abscisic acid, and gibberellin) at the speed of 14 min per sample.

0 Q&A 648 Views Sep 20, 2022

When performing renal biopsy, it is necessary to identify the cortex, where glomeruli are exclusively distributed, to ensure the quality of the specimen for histological diagnosis. However, conventional methods using a stereomicroscope or magnifying lens often fail to clarify the quality of the specimen. We have established a fluorescent-based imaging technique for the on-site assessment of renal biopsy specimens. The fluorescent images can be easily obtained by adding an optical filter to the microscope and with a short incubation of an activatable fluorescent probe. This novel imaging technique can be applied to renal biopsy specimens for distinguishing the renal cortex.

0 Q&A 1992 Views Jun 20, 2022

Nicotinamide adenine dinucleotide (NAD) is an essential cofactor of numerous enzymatic reactions found in all living cells. Pyridine nucleotides (NAD+ and NADH) are also key players in signaling through reactive oxygen species (ROS), being crucial in the regulation of both ROS-producing and ROS-consuming systems in plants. NAD content is a powerful modulator of metabolic integration, protein de-acetylation, and DNA repair. The balance between NAD oxidized and reduced forms, i.e., the NADH/NAD+ ratio, indicates the redox state of a cell, and it is a measurement that reflects the metabolic health of cells. Here we present an easy method to estimate the NAD+ and NADH content enzymatically, using alcohol dehydrogenase (ADH), an oxido-reductase enzyme, and with MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) as the substrate and 1-methoxy PMS (1-Methoxy-5-methylphenazinium methyl sulfate) as the electron carrier. MTT is reduced to a purple formazan, which is then detected. We used Arabidopsis leaf samples exposed to aluminum toxicity and under untreated control conditions. NADH/NAD+ connects many aspects of metabolism and plays vital roles in plant developmental processes and stress responses. Therefore, it is fundamental to determine the status of NADH/NAD+ under stress.

0 Q&A 2354 Views Jun 5, 2022

Reactive oxygen species are ubiquitous in nature, and function as signalling molecules in biological systems; they may also contribute to oxidative stress in several pathobiological disease states. In this report, we describe a simple, reliable, sensitive, and specific assay for the detection and quantitation of hydrogen peroxide (H2O2) release by living cells, organoids, or tissues. Furthermore, the low cost of reagents required for this assay makes it inexpensive relative to commercial kits. The high sensitivity and specificity are based on the ability of H2O2 to react with heme peroxidases and convert para-substituted phenolic compounds to fluorescent dimers.


Graphical abstract:


0 Q&A 2047 Views Mar 20, 2022

Different pathways for autotrophic CO2 fixation can be recognized by the presence of genes for their specific key enzymes. On this basis, (meta)genomic, (meta)transcriptomic, or (meta)proteomic analysis enables the identification of the role of an organism or a distinct pathway in primary production. However, the recently discovered variant of the reductive tricarboxylic acid (rTCA) cycle, the reverse oxidative tricarboxylic acid (roTCA) cycle, lacks unique enzymes, a feature that makes it cryptic for bioinformatics analysis. This pathway is a reversal of the widespread tricarboxylic acid (TCA) cycle. The functioning of the roTCA cycle requires unusually high activity of citrate synthase, the enzyme responsible for citrate cleavage, as well as elevated CO2 partial pressures. Here, we present a detailed description of the protocol we used for the identification of the roTCA cycle in members of Desulfurellaceae. First, we describe the anaerobic cultivation of Desulfurellaceae at different CO2 concentrations with a method that can be adapted to the cultivation of other anaerobes. Then, we explain how to measure activities of enzymes responsible for citrate cleavage, malate dehydrogenase reaction, and the crucial carboxylation step of the cycle catalyzed by pyruvate synthase in cell extracts. In conclusion, we describe stable isotope experiments that allow tracking of the roTCA cycle in vivo, through the position-specific incorporation of carbon-13 into amino acids. The label is provided to the organism as 13CO2 or [1-13C]glutamate. The same key methodology can be used for the reliable evaluation of the functioning of the roTCA cycle in any organism under study. This pathway is likely to participate, completely unseen, in the metabolism of various microorganisms.


Graphic abstract:



0 Q&A 1710 Views Oct 20, 2021

Lipids in biomembranes can control the structure and, therefore, the functionality of membrane-embedded protein complexes. Unraveling how the lipid composition determines the mode of operation of membrane proteins provides mechanistic insights into their functionality. We applied a proteoliposome technique for studying how proteins function in biomembranes. The incorporation of isolated membrane proteins in preformed liposomes made from a well-defined lipid composition (proteoliposomes) is a powerful tool for studying lipid-protein interactions. Over several decades, the proteoliposome technique was employed for many different membrane proteins. Recently, it was recognized that different lipid compositions control the light-harvesting functionality of the major photosynthetic light-harvesting complex II (LHCII) isolated from plant thylakoid membranes in vitro. This technique allows systematic examination of the role of so-called non-bilayer lipids on light-harvesting characteristics of LHCII. This protocol describes the isolation of LHCII from leaves and details a four-step procedure to incorporate the detergent-solubilized membrane protein in large unilamellar vesicles (LUV). The protocol was optimized to ensure a very high lipid/protein ratio, designed to specifically examine lipid-protein interactions by minimizing LHCII aggregation. The procedure provides structurally and functionally highly intact LHCII in a detergent-free lipid bilayer with a defined composition.