生物化学


分类

现刊
往期刊物
2 Q&A 10237 Views Aug 5, 2018
This is a protocol for quantitative determination of storage and total carbohydrates in algae and cyanobacteria. The protocol is simple, fast and sensitive and it requires only few standard chemicals. Great advantage of this protocol is that both storage and total saccharides can be determined in the cellular pellets that were already used for chlorophyll and carotenoids quantification. Since it is recommended to perform the pigments measurement in triplicates, each pigment analysis can generate samples for both total saccharide and glycogen/starch content quantification.

The protocol was applied for quantification of both storage and total carbohydrates in cyanobacteria Synechocystis sp. PCC 6803, Cyanothece sp. ATCC 51142 and Cyanobacterium sp. IPPAS B-1200. It was also applied for estimation of storage polysaccharides in Galdieria (IPPAS P-500, IPPAS P-507, IPPAS P-508, IPPAS P-513), Cyanidium caldarium IPPAS P-510, in green algae Chlorella sp. IPPAS C-1 and C-1210, Parachlorella kessleri IPPAS C-9, Nannochloris sp. C-1509, Coelastrella sp. IPPAS H-626, Haematococcus sp. IPPAS H-629 and H-239, and in Eustigmatos sp. IPPAS H-242 and IPPAS C-70.
0 Q&A 5848 Views May 5, 2018
Cyanobacteria, which have the extraordinary ability to grow using sunlight and carbon dioxide, are emerging as a green host to produce value-added products. Exploitation of this highly promising host to make products may depend on the ability to modulate the glucose metabolic pathway; it is the key metabolic pathway that generates intermediates that feed many industrially important pathways. Thus, before cyanobacteria can be considered as a leading source to produce value-added products, we must understand the interaction between glucose metabolism and other important cellular activities such as photosynthesis and chlorophyll metabolism. Here we describe reproducible and reliable methods for measuring extracellular glucose and glycogen levels from cyanobacteria.
0 Q&A 9275 Views Jul 5, 2017
Organisms store carbohydrates in several forms. In yeast, carbohydrates are stored in glycogen (a multi-branched polysaccharide) and in trehalose (a disaccharide). As in other organisms, the amount of stored carbohydrate varies dramatically with physiological state, and accordingly, an assay of stored carbohydrate can help reveal physiological state. Here, we describe relatively easy and streamlined assays for glycogen and trehalose in yeast that can be applied either to a few samples, or in a moderately high-throughput fashion (dozens to hundreds of samples).
0 Q&A 11680 Views Sep 5, 2014
The presence of intracellular glycogen can be detected by the following iodine staining technique. Cells with glycogen stain dark brown, whereas in its absence they remain with a pale yellowish color. It is hypothesized that iodine atoms fit into helical coils formed by the α-polyglucan to form a coloured glycogen-iodine complex. Here, we have studied the expression of Streptococcus mutans (S. mutans) genes that control the biosynthesis of this polysaccharide (Asencion Diez et al., 2013). Thus, we expressed glgC and glgD genes coding for both ADP-Glc pyrophosphorylase subunits in Escherichia coli (E. coli) AC70R1-504 cells to complement the deficient accumulation of glycogen by this strain (Iglesias et al., 1993). In control cells or in those where an inactive protein was expressed, the synthesis of the polysaccharide was undetectable by this iodine staining technique.
0 Q&A 12536 Views Jun 5, 2014
Glycogen, a soluble multi-branched glucose homopolysaccharide, is composed of chains of α-1,4-linked glucose residues interconnected by α-1,6-linked branches. The classical biosynthetic pathway involves phosphoglucomutase (Pgm), glucose-1-phosphate adenylyltransferase (GlgC or GlgCD), glycogen synthase (GlgA) and branching enzyme (GlgB). Phosphoglucomutase converts glucose-6-phosphate into glucose-1-phosphate, which serves as a substrate for ADP-glucose synthesis catalyzed by GlgC or GlgCD. Then, GlgA catalyzes the transfer of glucosyl units from ADP-glucose to the elongating chain of linear α-1,4-glucan. GlgB subsequently cleaves off portions of the glucan and links it to internal glucose molecules in existing chains via α-1,6 glycosidic bonds to form the glycogen structure. Glycogen breakdown is mediated by glycogen phosphorylase (GlgP) and debranching enzyme (GlgX), which catalyze the sequential phosphorolysis of α-1,4-glucosyl linkages in the glucan chain from the non-reducing ends and debranching of the limit dextrins generated by GlgP, respectively. An increasing number of studies have revealed the involvement of glycogen metabolism in a multitude of physiological functions in some prokaryotes beyond the function of synthesizing energy storage compounds. Lactobacillus acidophilus NCFM was the first probiotic lactic acid bacterium demonstrated to possess a functional glycogen biosynthesis pathway that is involved in its growth, bile tolerance and complex carbohydrate metabolism (Goh and Klaenhammer, 2013). The following qualitative (for detection of intracellular glycogen) and quantitative (for measurement of intracellular glycogen content) intracellular glycogen assay protocols for Lactobacillus acidophilus (L. acidophilus) were modified from previous works (Govons et al., 1969; Law et al., 1995; Parrou and Francois, 1997) and should be applicable to other lactic acid bacteria as well as most microorganisms.
11 Q&A 39483 Views May 20, 2012
Liver is the major site for glycogen storage. Glycogen content can be significantly altered upon disruption of glucose homeostasis in metabolic syndromes, such as diabetes. Glycogen content can be determined by an acid-hydrolysis method (Passonneau and Lauderdale, 1974). Basically, glucose, the hydrolysis product of glycogen, is converted into glucose-6-phosphate (G-6-P) by hexokinase in the presence of ATP. With the supply of NADP, G-6-P is further converted into 6-phosphogluconic acid by G-6-P dehydrogenase (G-6-PDH), while production of NADPH can be measured spectrophotometrically. Our lab has used this method to demonstrate that liver glycogen levels are significantly elevated in diabetic Perk knockout mice (Zhang et al., 2002).