细胞生物学


分类

现刊
往期刊物
0 Q&A 490 Views Jul 5, 2024

Adult mammals lack the ability to regenerate retinal neurons after injury. However, in previous studies from this lab, topical application of the selective alpha7 nicotinic acetylcholine receptor (nAChR) agonist, PNU-282987, has been associated with an increase in the number of retinal neurons in adult murine models both in the presence and absence of injury to the retina. Additionally, studies assaying mitotic markers have shown a substantial increase in the amount of mitotically active and proliferating cells with the topical application of the alpha7 nAChR agonist. However, these previous studies were performed using fluorescent immunolabeling and subsequent confocal microscopy, thus limiting the number of antibodies that can be multiplexed. As a result, we have developed a flow cytometry method that allows for the multiplexing and analysis of multiple external and internal markers in dissociated retinal cells. In this paper, a step-by-step protocol is described for the labeling of multiple retinal cell types such as retinal ganglion cells, rod photoreceptors, and Müller glia, concurrently with Müller glia–derived progenitor cells that arise after treatment with PNU-282987.

1 Q&A 1013 Views Jun 20, 2024

Microglia, the brain's primary resident immune cell, exists in various phenotypic states depending on intrinsic and extrinsic signaling. Distinguishing between these phenotypes can offer valuable biological insights into neurodevelopmental and neurodegenerative processes. Recent advances in single-cell transcriptomic profiling have allowed for increased granularity and better separation of distinct microglial states. While techniques such as immunofluorescence and single-cell RNA sequencing (scRNA-seq) are available to differentiate microglial phenotypes and functions, these methods present notable limitations, including challenging quantification methods, high cost, and advanced analytical techniques. This protocol addresses these limitations by presenting an optimized cell preparation procedure that prevents ex vivo activation and a flow cytometry panel to distinguish four distinct microglial states from murine brain tissue. Following cell preparation, fluorescent antibodies were applied to label 1) homeostatic, 2) disease-associated (DAM), 3) interferon response (IRM), and 4) lipid-droplet accumulating (LDAM) microglia, based on gene markers identified in previous scRNA-Seq studies. Stained cells were analyzed by flow cytometry to assess phenotypic distribution as a function of age and sex. A key advantage of this procedure is its adaptability, allowing the panel provided to be enhanced using additional markers with an appropriate cell analyzer (i.e., Cytek Aurora 5 laser spectral flow cytometer) and interrogating different brain regions or disease models. Additionally, this protocol does not require microglial cell sorting, resulting in a relatively quick and straightforward experiment. Ultimately, this protocol can compare the distribution of microglial phenotypic states between various experimental groups, such as disease state or age, with a lower cost and higher throughput than scRNA-seq.

0 Q&A 558 Views Jun 5, 2024

Extracellular vesicles (EVs) are a heterogeneous group of nanoparticles possessing a lipid bilayer membrane that plays a significant role in intercellular communication by transferring their cargoes, consisting of peptides, proteins, fatty acids, DNA, and RNA, to receiver cells. Isolation of EVs is cumbersome and time-consuming due to their nano size and the co-isolation of small molecules along with EVs. This is why current protocols for the isolation of EVs are unable to provide high purity. So far, studies have focused on EVs derived from cell supernatants or body fluids but are associated with a number of limitations. Cell lines with a high passage number cannot be considered as representative of the original cell type, and EVs isolated from those can present distinct properties and characteristics. Additionally, cultured cells only have a single cell type and do not possess any cellular interactions with other types of cells, which normally exist in the tissue microenvironment. Therefore, studies involving the direct EVs isolation from whole tissues can provide a better understanding of intercellular communication in vivo. This underscores the critical need to standardize and optimize protocols for isolating and characterizing EVs from tissues. We have developed a differential centrifugation-based technique to isolate and characterize EVs from whole adipose tissue, which can be potentially applied to other types of tissues. This may help us to better understand the role of EVs in the tissue microenvironment in both diseased and normal conditions.

0 Q&A 638 Views May 5, 2024

Plasma membrane proteins mediate important aspects of physiology, including nutrient acquisition, cell–cell interactions, and monitoring homeostasis. The trafficking of these proteins, involving internalisation from and/or recycling back to the cell surface, is often critical to their functions. These processes can vary among different proteins and cell types and states and are still being elucidated. Current strategies to measure surface protein internalisation and recycling are typically microscopy or biochemical assays; these are accurate but generally limited to analysing a homogenous cell population and are often low throughput. Here, we present flow cytometry–based methods involving probe-conjugated antibodies that enable quantification of internalisation or recycling rates at the single-cell level in complex samples. To measure internalisation, we detail an assay where the protein of interest is labelled with a specific antibody conjugated to a fluorescent oligonucleotide-labelled probe. To measure recycling, a specific antibody conjugated to a cleavable biotin group is employed. These probes permit the differentiation of molecules that have been internalised or recycled from those that have not. When combined with cell-specific marker panels, these methods allow the quantitative study of plasma membrane protein trafficking dynamics in a heterogenous cell mixture at the single-cell level.

0 Q&A 2779 Views Dec 20, 2023

Clearance of dying cells, named efferocytosis, is a pivotal function of professional phagocytes that impedes the accumulation of cell debris. Efferocytosis can be experimentally assessed by differentially tagging the target cells and professional phagocytes and analyzing by cell imaging or flow cytometry. Here, we describe an assay to evaluate the uptake of apoptotic cells (ACs) by human macrophages in vitro by labeling the different cells with commercially available dyes and analysis by flow cytometry. We detail the methods to prepare and label human macrophages and apoptotic lymphocytes and the in vitro approach to determine AC uptake. This protocol is based on previously published literature and allows for in vitro modeling of the efficiency of AC engulfment during continual efferocytosis process. Also, it can be modified to evaluate the clearance of different cell types by diverse professional phagocytes.


Graphical overview


0 Q&A 1324 Views Sep 20, 2023

Gammaherpesviruses such as Epstein-Barr virus (EBV) are major modulators of the immune responses of their hosts. In the related study (PMID: 35857578), we investigated the role for Ly6Chi monocytes in shaping the function of effector CD4+ T cells in the context of a murine gammaherpesvirus infection (Murid gammaherpesvirus 4) as a model of human EBV. In order to unravel the polyfunctional properties of CD4+ T-cell subsets, we used multiparametric flow cytometry to perform intracellular staining on lung cells. As such, we have developed herein an intracellular staining workflow to identify on the same samples the cytotoxic and/or regulatory properties of CD4+ lymphocytes at the single-cell level. Briefly, following perfusion, collection, digestion, and filtration of the lung to obtain a single-cell suspension, lung cells were cultured for 4 h with protein transport inhibitors and specific stimulation media to accumulate cytokines of interest and/or cytotoxic granules. After multicolor surface labeling, fixation, and mild permeabilization, lung cells were stained for intracytoplasmic antigens and analyzed with a Fortessa 4-laser cytometer. This method of quantifying cytotoxic mediators as well as pro- or anti-inflammatory cytokines by flow cytometry has allowed us to decipher at high resolution the functional heterogeneity of lung CD4+ T cells recruited after a viral infection. Therefore, this analysis provided a better understanding of the importance of CD4+ T-cell regulation to prevent the development of virus-induced immunopathologies in the lung.


Key features

• High-resolution profiling of the functional properties of lung-infiltrating CD4+ T cells after viral infection using conventional multiparametric flow cytometry.

• Detailed protocol for mouse lung dissection, preparation of single-cell suspension, and setup of multicolor surface/intracellular staining.

• Summary of optimal ex vivo restimulation conditions for investigating the functional polarization and cytokine production of lung-infiltrating CD4+ T cells.

• Comprehensive compilation of necessary biological and technical controls to ensure reliable data analysis and interpretation.


Graphical overview



Graphical abstract depicting the interactions between immune cells infiltrating the alveolar niche and the lung during respiratory infection with a gammaherpesvirus (Murid herpesvirus 4, MuHV-4). Two distinct situations are represented: the inflammatory response developed during viral replication in the lung, either in the presence (WT mice) or absence of regulatory monocytes (CCR2KO mice). Sequential process of the experiment is represented, starting from intratracheal instillation of MuHV-4 virions to tissue dissociation and multicolor staining for flow cytometry analysis.

0 Q&A 2095 Views Oct 5, 2022

The sirtuin 6 has emerged as a regulator of acute and chronic immune responses. Recent findings show that SIRT6 is necessary for mounting an active inflammatory response in macrophages. In vitro studies revealed that SIRT6 is stabilized in the cytoplasm to promote tumor necrosis factor (TNFα) secretion. Notably, SIRT6 also promotes TNFα secretion by resident peritoneal macrophages upon lipopolysaccharide (LPS) stimulation in vivo. Although many studies have investigated SIRT6 function in the immune response through different genetic and pharmacological approaches, direct measurements of in vivo SIRT6 expression in immune cells by flow cytometry have not yet been performed. Here, we describe a step-by-step protocol for peritoneal fluid extraction, isolation, and preparation of peritoneal cavity cells, intracellular SIRT6 staining, and flow cytometry analysis to measure SIRT6 levels in mice peritoneal macrophages. By providing a robust method to quantify SIRT6 levels in different populations of macrophages, this method will contribute to deepening our understanding of the role of SIRT6 in immunity, as well as in other cellular processes regulated by SIRT6.


Graphical abstract:




0 Q&A 1938 Views May 20, 2022

DNA double strand breaks (DSBs) constantly arise in cells during normal cellular processes or upon exposure to genotoxic agents, and are repaired mostly by homologous recombination (HR) and non-homologous end joining (NHEJ). One key determinant of DNA DSB repair pathway choice is the processing of broken DNA ends to generate single strand DNA (ssDNA) overhangs, a process termed DNA resection. The generation of ssDNA overhangs commits DSB repair through HR and inhibits NHEJ. Therefore, DNA resection must be carefully regulated to avoid mis-repaired or persistent DSBs. Accordingly, many approaches have been developed to monitor ssDNA generation in cells to investigate genes and pathways that regulate DNA resection. Here we describe a flow cytometric approach measuring the levels of replication protein A (RPA) complex, a high affinity ssDNA binding complex composed of three subunits (RPA70, RPA32, and RPA14 in mammals), on chromatin after DNA DSB induction to assay DNA resection. This flow cytometric assay requires only conventional flow cytometers and can easily be scaled up to analyze a large number of samples or even for genetic screens of pooled mutants on a genome-wide scale. We adopt this assay in G0- and G1- phase synchronized cells where DNA resection needs to be kept in check to allow normal NHEJ.

0 Q&A 2011 Views May 20, 2022

Cyanobacteria are Gram-negative oxygen-producing photosynthetic bacteria that are useful in the pharmaceutical and biofuel industries. Monitoring of oxidative stress under fluctuating environmental conditions is important for determining the fitness, survival, and growth of cyanobacteria in the laboratory as well as in large scale cultivation systems. Here, we provide a protocol developed using unicellular Synechococcus elongatus PCC 7942 and filamentous Fremyella diplosiphon BK14 cyanobacteria for high-throughput oxidative stress measurement by 2′,7′-dichlorodihydrofluorescein-diacetate (DCFH-DA) and flow cytometry (FCM). We also provide details for the optimization of cell number, dye concentration, and FCM parameters for each organism before it can be utilized to quantify reactive oxygen species (ROS). FCM-based method can be used to measure ROS in a large population of cyanobacterial cells in a high-throughput manner.


Graphical abstract:



0 Q&A 1523 Views Mar 20, 2022

Ex vivo culture of primary acute myeloid leukemia (AML) cells is notoriously difficult due to spontaneous differentiation and cell death, which hinders mechanistic and translational studies. To overcome this bottleneck, we have implemented a co-culture system, where the OP9-M2 stromal cells support the growth, but most notably limit the differentiation of primary AML cells, thus allowing for mechanistic studies in vitro. Additionally, the co-culture on OP9-M2 stromal is superior in preserving surface marker expression of primary (adult and pediatric) AML cells in comparison to stroma-free culture. Thus, by combining the co-culture with multicolor, high-throughput FACS, we can evaluate the effect of hundreds of small molecules on multi-parametric processes including: cell survival, stemness (leukemic stem cells), and myeloid differentiation on the primary AML cells at a single-cell level. This method streamlines the identification of potential therapeutic agents, but also facilitates combinatorial screening aiming, for instance, at dissecting the regulatory pathways in a patient-specific manner.


Graphic abstract:



Schematic representation of the ex vivo small molecule screening of primary human acute myeloid leukemia. Irradiated, sub-confluent OP9-M2 stromal cells are plated in half-area 96 wells plates 4–16 h prior to adding primary AML cells. Compounds are added 36–48 h later and effects on cell number, leukemic stem cell population, and myeloid differentiation are quantifed by FACS after 4 days of treatment.