生物化学


分类

现刊
往期刊物
0 Q&A 6826 Views Mar 20, 2018
Methyltransferases that methylate the guanine-N7 position of the mRNA 5’ cap structure are ubiquitous among eukaryotes and commonly encoded by viruses. Here we provide a detailed protocol for the biochemical analysis of RNA cap methyltransferase activity of biological samples. This assay involves incubation of cap-methyltransferase-containing samples with a [32P]G-capped RNA substrate and S-adenosylmethionine (SAM) to produce RNAs with N7-methylated caps. The extent of cap methylation is then determined by P1 nuclease digestion, thin-layer chromatography (TLC), and phosphorimaging. The protocol described here includes additional steps for generating the [32P]G-capped RNA substrate and for preparing nuclear and cytoplasmic extracts from mammalian cells. This assay is also applicable to analyzing the cap methyltransferase activity of other biological samples, including recombinant protein preparations and fractions from analytical separations and immunoprecipitation/pulldown experiments.
1 Q&A 18278 Views Dec 20, 2016
Accumulating evidence is revealing the essential role of immune system in cancer treatment. Certain chemotherapeutic drugs can potently induce the release of ‘cell death associated molecular patterns’ (CDAMPs), which accompanies cancer cell demise. CDAMPs can engage corresponding receptors on immune cells and stimulate immune responses to achieve long-term tumor control (Ma et al., 2013; Ma et al., 2014; Yang et al., 2015). Among reported CDAMPs, calreticulin (CALR), ATP and HMGB1 are well known for their immune-stimulatory effect. Here we describe the assays that we applied to measure cell death and these CDAMPs. Briefly, cell death can be analyzed by co-staining of 4’,6-diamidino-2-phenylindole (DAPI) with 3,3’-Dihexyloxacarbocyanine Iodide [DiOC6(3)] or Annexin V. CALR exposure on the cell membrane can be detected by flow cytometry. ATP and HMGB1 release can be quantified by luminescence assay and ELISA assay respectively.
0 Q&A 10506 Views Dec 5, 2016
Eukaryotic cells heavily depend on adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS) within mitochondria. ATP is the major energy currency molecule, which fuels cell to carry out numerous processes, including growth, differentiation, transportation and cell death among others (Khakh and Burnstock, 2009). Therefore, ATP levels can serve as a metabolic gauge for cellular homeostasis and survival (Artal-Sanz and Tavernarakis, 2009; Gomes et al., 2011; Palikaras et al., 2015). In this protocol, we describe a method for the determination of intracellular ATP levels using a bioluminescence approach in the nematode Caenorhabditis elegans.
0 Q&A 9138 Views Jul 20, 2016
Glycolysis provides metabolites for energy production via oxidative phosphorylation during vegetative growth of Fusarium oxysporum. Therefore, determination of intracellular ATP levels might be of valuable help to analyze regulation of glycolysis/gluconeogenesis pathways. The protocol described here can be applied to other filamentous fungi.