PS
Patricia Scholz
  • Post-Doc, Universität Göttingen
研究方向
  • Biochemistry, Cell Biology, Plant Science
Analysis of Pectin-derived Monosaccharides from Arabidopsis Using GC–MS
拟南芥果胶单糖的GC–MS分析
作者:Patricia Scholz, Kent D. Chapman, Till Ischebeck and Athanas Guzha日期:08/20/2023,浏览量:556,Q&A: 0

Pectin is a complex polysaccharide present in the plant cell wall, whose composition is constantly remodelled to adapt to environmental or developmental changes. Mutants with altered pectin composition have been reported to exhibit altered stress or pathogen resistance. Understanding the link between mutant phenotypes and their pectin composition requires robust analytical methods to detect changes in the relative monosaccharide composition. Here, we describe a quick and efficient gas chromatography–mass spectrometry (GC–MS)-based method that allows the differential analysis of pectin monosaccharide composition in plants under different conditions or between mutant plants and their respective wild types. Pectin is extracted from seed mucilage or from the alcohol-insoluble residue prepared from leaves or other organs and is subsequently hydrolysed with trifluoracetic acid. The resulting acidic and neutral monosaccharides are then derivatised and measured simultaneously by GC–MS.


Key features

• Comparative analysis of monosaccharide content in Arabidopsis-derived pectin between different genotypes or different treatments.

• Procedures for two sources of pectin are shown: seed coat mucilage and alcohol-insoluble residue.

• Allows quick analyses of neutral and acidic monosaccharides simultaneously.


Graphical overview


Quantification of Botrytis cinerea Growth in Arabidopsis thaliana
拟南芥灰葡萄孢生长的定量研究
作者:Patricia Scholz, Kent D. Chapman, Till Ischebeck and Athanas Guzha日期:08/20/2023,浏览量:1160,Q&A: 1

Yield losses attributed to plant pathogens pose a serious threat to plant productivity and food security. Botrytis cinerea is one of the most devastating plant pathogens, infecting a wide array of plant species; it has also been established as a model organism to study plant–pathogen interactions. In this context, development of different assays to follow the relative success of B. cinerea infections is required. Here, we describe two methods to quantify B. cinerea development in Arabidopsis thaliana genotypes through measurements of lesion development and quantification of fungal genomic DNA in infected tissues. This provides two independent techniques that are useful in assessing the susceptibility or tolerance of different Arabidopsis genotypes to B. cinerea.


Key features

• Protocol for the propagation of the necrotrophic plant pathogen fungus Botrytis cinerea and spore production.

• Two methods of Arabidopsis thaliana infection with the pathogen using droplet and spray inoculation.

• Two readouts, either by measuring lesion size or by the quantification of fungal DNA using quantitative PCR.

• The two methods are applicable across plant species susceptible the B. cinerea.


Graphical overview



A simplified overview of the droplet and spray infection methods used for the determination of B. cinerea growth in different Arabidopsis genotypes