细胞生物学


分类

现刊
往期刊物
0 Q&A 1462 Views Apr 5, 2022

Neutralizing antibodies (NAbs) are of particular importance because they can prevent binding of the receptor binding domain (RBD) of the spike protein (S protein) to the angiotensin-converting enzyme 2 (ACE2) receptor present at the surface of human cells, preventing virus entry into the host cells. The gold standard method for detection of NAbs is the plaque reduction neutralization test (PRNT). Based on the measurement of cell lysis due to viral infection, this test is able to detect antibodies that prevent cell infection (Muruato et al., 2020; Lau et al., 2021). This technique requires the use of live pathogens, i.e., SARS-CoV-2 in this case, and must be done in a biosafety level 3 (BL3) laboratory. In addition, it requires expensive installations, skillful and meticulous staff, and a high workload, which prevents its wide implementation even in research laboratories. A SARS-CoV-2 pseudovirus will express the S protein responsible for cell entrance, but will not express the pathogenic genetic material of the virus, making them less dangerous for laboratory staff and the environment.


Graphic abstract:



0 Q&A 1740 Views Mar 20, 2022

The human immunodeficiency virus (HIV)-1 viral inhibition assay (VIA) measures CD8+ T cell-mediated inhibition of HIV replication in CD4+ T cells and is increasingly used for clinical testing of HIV vaccines and immunotherapies. Different VIAs that differ in length of CD8:CD4 T cell culture periods (6–13 days), purity of CD4 cultures [isolated CD4+ T cells or CD8+ depleted peripheral blood mononuclear cells (PBMCs)], HIV strains (laboratory strains, isolates, reporter viruses) and read-outs of virus inhibition (p24 ELISA, intracellular measurement of p24, luciferase reporter expression, and viral gag RNA) have been reported.

Here, we describe multiple modifications to a 7-day VIA protocol, the most impactful being the introduction of independent replicate cultures for both HIV infected-CD4 (HIV-CD4) and HIV-CD4:CD8 T cell cultures. Virus inhibition was quantified using a ratio of weighted averages of p24+ cells in replicate cultures and the corresponding 95% confidence intervals. We identify methodological and analysis changes that could be incorporated into other protocols to improve assay reproducibility. We found that in people living with HIV (PLWH) on antiretroviral therapy (ART), CD8 T cell virus inhibition was largely stable over time, supporting the use of this assay and/or analysis methods to examine therapeutic interventions.


Graphic abstract:



0 Q&A 2647 Views Nov 5, 2021

For enveloped viruses, such as SARS-CoV-2, transmission relies on the binding of viral glycoproteins to cellular receptors. Conventionally, this process is recapitulated in the lab by infection of cells with isolated live virus. However, such studies can be restricted due to the availability of high quantities of replication-competent virus, biosafety precautions and associated trained staff. Here, we present a protocol based on pseudotyping to produce recombinant replication-defective lentiviruses bearing the SARS-CoV or SARS-CoV-2 attachment Spike glycoprotein, allowing the investigation of viral entry in a lower-containment facility. Pseudoparticles are produced by cells transiently transfected with plasmids encoding retroviral RNA packaging signals and Gag-Pol proteins, for the reconstitution of lentiviral particles, and a plasmid coding for the viral attachment protein of interest. This approach allows the investigation of different aspects of viral entry, such as the identification of receptor tropism, the prediction of virus host range, and zoonotic transmission potential, as well as the characterisation of antibodies (sera or monoclonal antibodies) and pharmacological inhibitors that can block entry.


Graphic abstract:

SARS-CoV and SARS-CoV-2 pseudoparticle generation and applications.


0 Q&A 2573 Views Mar 5, 2021

The genus Flavivirus within the family Flaviviridae includes many viral species of medical importance, such as yellow fever virus (YFV), Zika virus (ZIKV), and dengue virus (DENV), among others. Presently, the identification of flavivirus-infected cells is based on either the immunolabeling of viral proteins, the application of recombinant reporter replicons and viral genomes, or the use of cell-based molecular reporters of the flaviviral protease NS2B-NS3 activity. Among the latter, our flavivirus-activatable GFP and mNeptune reporters contain a quenching peptide (QP) joined to the fluorescent protein by a linker consisting of a cleavage site for the flavivirus NS2B-NS3 proteases (AAQRRGRIG). When the viral protease cleaves the linker, the quenching peptide is removed, and the fluorescent protein adopts a conformation promoting fluorescence. Here we provide a detailed protocol for the generation, selection and implementation of stable BHK-21 cells expressing our flavivirus genetically-encoded molecular reporters, suitable to monitor the viral infection by live-cell imaging. We also describe the image analysis procedures and provide the required software pipelines. Our reporter cells allow the implementation of single-cell infection kinetics as well as plaque assays for both reference and native strains of flaviviruses by live-cell imaging.


Graphic abstract:



Workflow for the generation and implementation of reporter BHK-21 cells for live imaging of flavivirus infection.


0 Q&A 9640 Views May 20, 2019
Mammalian cell transfection is a powerful technique commonly used in molecular biology to express exogenous DNA or RNA in cells and study gene and protein function. Although several transfection strategies have been developed, there is a wide variation with regards to transfection efficiency, cell toxicity and reproducibility. Thus, a sensitive and robust method that can optimize transfection efficiency based not only on expression of the target protein of interest but also on the uptake of the nucleic acids, can be an important tool in molecular biology. Herein, we present a simple, rapid and robust flow cytometric method that can be used as a tool to optimize transfection efficiency while overcoming limitations of prior established methods that quantify transfection efficiency.
0 Q&A 6611 Views Oct 20, 2018
While able to suppress HIV replication in HIV infected individuals, combination antiretroviral therapy (ART) fails to eliminate viral latent reservoir, which consists in integrated transcriptional silenced HIV provirus. So far, identification of latently-infected cells has relied on activating cells to induce expression of HIV proteins which can then be detected. Unfortunately, this activation significantly changed the cell phenotype. We developed a novel HIV reporter, named HIVGKO, that allows the purification of latently-infected cells in absence of reactivation. Indeed, latent cells can be identified by expression of the EF1a-driven mKO2 and lack of expression of the LTR-driven csGFP. This protocol can be used to study the effectiveness of LRAs (Latency Reversal Agents) in reactivating latent HIV in primary cells.
0 Q&A 4969 Views Sep 5, 2018
Rubella is a mildly contagious disease characterized by low-grade fever and a morbilliform rash caused by the rubella virus (RuV). Viruses often use cellular phospholipids for infection. We studied the roles of cellular sphingomyelin in RuV infection. Treatment of cells with sphingomyelinase (SMase) inhibited RuV infection in rabbit kidney-derived RK13 cells and African green monkey (Cercopithecus aethiops) kidney-derived Vero cells. Our data further demonstrated that RuV used cellular sphingomyelin and cholesterol for its binding to cells and membrane fusion at the step of virus entry. Detailed protocols of our assays, which assess the effects of SMase treatment on RuV infectivity in RK13 and Vero cells, are described.
0 Q&A 11902 Views May 20, 2018
In a narrow definition, virucidal activity represents the activity by which to interact with and physically disrupt viral particles. In a broad definition, it includes the activity by which to functionally inhibit (neutralize) viral infectivity without apparent morphological alterations of the viral particles. The viral infectivity can be measured in cell culture system by means of plaque assay, infectious focus assay, 50% tissue culture infectious dose (TCID50) assay, etc. Morphologically, disruption of viral particles can be demonstrated by negative staining electron microscopic analysis of viral particles. In this article, we describe methods to assess virucidal activity in a broad definition.
0 Q&A 9104 Views Mar 20, 2017
In 2014 enterovirus D68 (EV-D68) caused the largest outbreak in the United States since the discovery of the virus. Distinct from before, the 2014 infections were associated with more severe respiratory disease and occasional neurological complications. So far, there are no available vaccines or antivirals for the prophylaxis or treatment of EV-D68 infections. In order to evaluate the antiviral activity of potential inhibitors of EV-D68 replication, a cell-based cytopathic effect (CPE) reduction assay was developed (Sun et al., 2015).