细胞生物学


分类

现刊
往期刊物
0 Q&A 298 Views Mar 5, 2024

The measurement of transepithelial electrical resistance across confluent cell monolayer systems is the most commonly used technique to study intestinal barrier development and integrity. Electric cell substrate impedance sensing (ECIS) is a real-time, label-free, impedance-based method used to study various cell behaviors such as cell growth, viability, migration, and barrier function in vitro. So far, the ECIS technology has exclusively been performed on cell lines. Organoids, however, are cultured from tissue-specific stem cells, which better recapitulate cell functions and the heterogeneity of the parent tissue than cell lines and are therefore more physiologically relevant for research and modeling of human diseases. In this protocol paper, we demonstrate that ECIS technology can be successfully applied on 2D monolayers generated from patient-derived intestinal organoids.


Key features

• We present a protocol that allows the assessment of various cell functions, such as proliferation and barrier formation, with ECIS on organoid-derived monolayers.

• The protocol facilitates intestinal barrier research on patient tissue-derived organoids, providing a valuable tool for disease modeling.

0 Q&A 780 Views Jan 20, 2024

The central nervous system (CNS) relies on the complex interaction of neuroglial cells to carry out vital physiological functions. To comprehensively understand the structural and functional interplay between these neuroglial cells, it is essential to establish an appropriate in vitro system that can be utilized for thorough investigation. Traditional protocols for establishing primary neuronal and mixed glial cultures from prenatal mice or neural stem cells require sacrificing pregnant mice and have the drawback of yielding only specific types of cells. Our current protocol overcomes these drawbacks by utilizing the brain from day-0 pups to isolate CNS resident neuroglial cells including astrocytes, microglia, oligodendrocytes [oligodendrocyte precursor cells (OPCs) and differentiated oligodendrocytes], and meningeal fibroblasts, as well as hippocampal neurons, avoiding sacrificing pregnant mice, which makes this procedure efficient and cost effective. Furthermore, through this protocol, we aim to provide step-by-step instructions for isolating and establishing different primary neuroglial cells and their characterization using cell-specific markers. This study presents an opportunity to isolate, culture, and establish all major CNS resident cells individually. These cells can be utilized in various cell-based and biochemical assays to comprehensively investigate the cell-specific roles and behaviors of brain resident cells in a reductionist approach.


Key features

• Efficient isolation of major neuroglial cells like meningeal fibroblasts, neurons, astrocytes, oligodendrocytes, and microglia from a single day-0 neonatal mouse pup’s brain.

• Circumvents the sacrifice of pregnant female mice.

• Acts as a bridging experimental method between secondary cell lines and in vivo systems.

• Isolated cells can be used for performing various cell-based and biochemical assays.


Graphical overview




Steps for isolation of meningeal fibroblast and neuroglial cells from day 0 pups of mice (Created using BioRender.com)


0 Q&A 762 Views Oct 5, 2023

Corneal epithelium and stroma are the major cellular structures for ocular protection and vision accuracy; they play important roles in corneal wound healing and inflammation under pathological conditions. Unlike human, murine corneal and stromal fibroblast cells are difficult to isolate for cell culture. In our laboratory, we successfully used an ex vivo culture procedure and an enzymatic procedure to isolate, purify, and culture mouse corneal epithelial and stromal fibroblast cells.


Key features

• Primary cell culture models of a disease are critical for cellular and molecular mechanism studies.

• Corneal tissues with the limbus contain stem cells to generate both epithelial and stromal cells.

• An ex vivo corneal culture provides a constant generation of primary corneal cells for multiple passages.

• The isolated cells are validated by the corneal epithelial cell markers Krt12 and Cdh1 and the stromal fibroblast marker Vim.

0 Q&A 433 Views Oct 5, 2023

Adult neural stem/progenitor cells (NSPCs) in two neurogenic areas of the brain, the dentate gyrus and the subventricular zone, are major players in adult neurogenesis. Addressing specific questions regarding NSPCs outside of their niche entails in vitro studies through isolation and culture of these cells. As there is heterogeneity in their morphology, proliferation, and differentiation capacity between these two neurogenic areas, NSPCs should be isolated from each area through specific procedures and media. Identifying region-specific NPSCs provides an accurate pathway for assessing the effects of extrinsic factors and drugs on these cells and investigating the mechanisms of neurogenesis in both healthy and pathologic conditions. A great number of isolation and expansion techniques for NSPCs have been reported. The growth and expansion of NSPCs obtained from the dentate gyrus of aged rats are generally difficult. There are relatively limited data and protocols about NSPCs isolation and their culture from aged rats. Our approach is an efficient and reliable strategy to isolate and expand NSPCs obtained from young adult and aged rats. NSPCs isolated by this method maintain their self-renewal and multipotency.


Key features

• NSPCs isolated from the hippocampal dentate gyrus of young adult and aged rats, based on Kempermann et al. (2014) and Aligholi et al. (2014).

• Maintenance of NSPCs isolated from the dentate gyrus of aged rats (20–24 months) in our culture condition is feasible.

• According to our protocol, maximum growth of primary neurospheres obtained from isolated NSPCs of young and aged rats took 15 and 35 days, respectively.


Graphical overview



Isolation and expansion of neural stem/progenitor cells

0 Q&A 610 Views Sep 5, 2023

Congenital heart disease (CHD) is often associated with myogenic defects. During heart development, cardiomyocyte growth requires essential cues from extrinsic factors such as insulin-like growth factor 2 (IGF-2). To determine whether and how growth factors account for embryonic cardiomyocyte proliferation, isolation followed by culturing of embryonic cardiomyocytes can be utilized as a useful tool for heart developmental studies. Current protocols for isolating cardiomyocytes from the heart do not include a cardiomyocyte-specific reporter to distinguish cardiomyocytes from other cell types. To optimize visualization of cardiomyocyte proliferation, our protocol utilizes a Tnnt2-promoter-driven H2B-GFP knock-in mouse model (TNNT2H2B-GFP/+) for in vitro visualization of nuclear-tagged cardiomyocyte-specific fluorescence. A cardiomyocyte-specific genetic reporter paired with an effective proliferation assay improves the reproducibility of mechanistic studies by increasing the accuracy of cell identification, proliferated cell counting, and cardiomyocyte tracking.


Key features

• This protocol refines previous methods of cardiomyocyte isolation to specifically target embryonic cardiomyocytes.

• UsesH2B-GFP/+cardiomyocyte reporters as identified by Yan et al. (2016).

• Traces cell proliferation with Phospho-Histone 3 (p-H3) assay.

• Has applications in assessing the role of growth factors in cardiomyocyte proliferation.


Graphical overview


0 Q&A 592 Views Dec 5, 2022

Entosis is a process where a living cell launches an invasion into another living cell’s cytoplasm. These inner cells can survive inside outer cells for a long period of time, can undergo cell division, or can be released. However, the fate of most inner cells is lysosomal degradation by entotic cell death. Entosis can be detected by imaging a combination of membrane, cytoplasmic, nuclear, and lysosomal staining in the cells. Here, we provide a protocol for detecting entosis events and measuring the kinetics of entotic cell death by time-lapse imaging using tetramethylrhodamine methyl ester (TMRM) staining.

1 Q&A 2294 Views Aug 20, 2022

Stable cell cloning is an essential aspect of biological research. All advanced genome editing tools rely heavily on stable, pure, single cell-derived clones of genetically engineered cells. For years, researchers have depended on single-cell dilutions seeded in 96- or 192-well plates, followed by microscopic exclusion of the wells seeded with more than or without a cell. This method is not just laborious, time-consuming, and uneconomical but also liable to unintentional error in identifying the wells seeded with a single cell. All these disadvantages may increase the time needed to generate a stable clone. Here, we report an easy-to-follow and straightforward method to conveniently create pure, stable clones in less than half the time traditionally required. Our approach utilizes cloning cylinders with non-toxic tissue-tek gel, commonly used for immobilizing tissues for sectioning, followed by trypsinization and screening of the genome-edited clones. Our approach uses minimal cell handling steps, thus decreasing the time invested in generating the pure clones effortlessly and economically.


Graphical abstract:



A schematic comparison showing the traditional dilution cloning and the method described here. Here, a well-separated colony (in the green box) must be preferred over the colonies not well separated (in the red box).


0 Q&A 2390 Views Nov 20, 2021

In the bone marrow microenvironment, endothelial cells (ECs) play a pivotal role in regulating the production of both growth and inhibiting factors. They are held together by adherence molecules that interact with hematopoietic progenitor cells. The study of ECs in the hematopoietic stem cell niche is limited due to the lack of efficient protocols for isolation. In this protocol, we developed a two-step approach to extract bone marrow endothelial cells (BMECs) to unlock the challenges researchers face in understanding the function of the endothelial vascular niche in in-vitro studies.

0 Q&A 2270 Views Oct 5, 2021

Müller cells, the major glial cells of the retina, play vital roles in maintaining redox homeostasis and retinal metabolism. An immortalized human Müller cell line (MIO-M1) is widely used as an in vitro model to study Müller cells’ function, but they may not be exactly the same as primarily cultured human Müller cells. The use of human primary Müller cells (huPMCs) in culture has been limited by the requirement for complicated culture systems or particular age ranges of donors. We have successfully grown huPMCs using our established protocol. The cell type was pure, and cultured cells expressed Müller cell-specific markers strongly. The cultured huPMCs were used for morphologic, metabolic, transcriptomic, and functional studies.


Graphic abstract:




Timeline for human primary Müller cell (huPMC) culture


0 Q&A 3673 Views Aug 20, 2021

Maintenance of DNA integrity is of pivotal importance for cells to circumvent detrimental processes that can ultimately lead to the development of various diseases. In the face of a plethora of endogenous and exogenous DNA-damaging agents, cells have evolved a variety of DNA repair mechanisms that are responsible for safeguarding genetic integrity. Given the relevance of DNA damage and its repair in disease, measuring the amount of both aspects is of considerable interest. The comet assay is a widely used method that allows the measurement of both DNA damage and its repair in cells. For this, cells are treated with DNA-damaging agents and embedded into a thin layer of agarose on top of a microscope slide. Subsequent lysis removes all protein and lipid components to leave so-called ‘nucleoids’ consisting of naked DNA remaining in the agarose. These nucleoids are then subjected to electrophoresis, whereby the negatively charged DNA migrates toward the anode depending on its degree of fragmentation and creates shapes resembling comets, which can be subsequently visualized and analyzed by fluorescence microscopy. The comet assay can be adapted to assess a wide variety of genotoxins and repair kinetics, in addition to both DNA single-strand and double-strand breaks. In this protocol, we describe in detail how to perform the alkaline comet assay to assess single-strand breaks and their repair using cultured human cell lines. We describe the workflow for assessing the amount of DNA damage generated by agents such as hydrogen peroxide (H2O2) and methyl-methanesulfonate (MMS) or present endogenously in cells, and how to assess the repair kinetics after such an insult. The procedure described herein is easy to follow and allows the cost-effective assessment of single-strand breaks and their repair kinetics in cultured cells.