干细胞


分类

现刊
往期刊物
0 Q&A 1822 Views Jun 5, 2022

Transplantation of hematopoietic material into recipient mice is an assay routinely used to determine the presence and function of hematopoietic stem and progenitor cells (HSPCs) in vivo. The principle of the method is to transplant donor cells being tested for HSPCs into a recipient mouse following bone marrow ablation and testing for reconstitution of hematopoiesis. Congenic mouse strains where donor and recipient differ by a distinct cell surface antigen (commonly CD45.1 versus CD45.2) are used to distinguish between cells derived from the donor and any residual recipient cells. Typically, the transplantation is performed using bone marrow cells, which are enriched for HSPCs. Here, we describe an analogous procedure using hematopoietic material from spleen, allowing detection of functional progenitors and/or stem cells in the spleen that can occur under certain pathologies. Key to the success of this procedure is the prior removal of mature T cells from the donor sample, to minimize graft versus host reactions. As such, this protocol is highly analogous to standard bone marrow transplant procedures, differing mainly only in the source of stem cells (spleen rather than bone marrow) and the recommendation for T cell depletion to avoid potential immune incompatibilities.


Graphical abstract:



Schematic overview for assessment of stem cells in spleen by transplantation.
Single cell suspensions from spleens are depleted of potentially pathogenic mature T lymphocytes by magnetic bead immunoselection using biotinylated antibodies against CD4 and CD8, followed by streptavidin magnetic beads, which are subsequently removed by using a magnet (MojoSort, Biolegend). Successful T cell depletion is then evaluated by Fluorescence Activated Cell Sorting (FACS). T-cell depleted cell suspension is injected intravenously through the retro-orbital sinus into lethally irradiated recipients. Recipients are analyzed for successful engraftment by FACS analysis for the presence of donor-derived mature hematopoietic lineages in the peripheral blood. A second serial transplantation can be used to document the presence of long-term reconstituting stem cells in the periphery of the original donor mice.


0 Q&A 3168 Views Aug 20, 2021

In vertebrates, hematopoietic stem cells (HSCs) regulate the supply of blood cells throughout the lifetime and help to maintain homeostasis. Due to their long lifespan, genetic integrity is paramount for these cells, and accordingly, a number of stem cell-specific mechanisms are employed. However, HSCs tend to show more DNA damage with increasing age due to an imbalance between proliferation rates and DNA damage responses. The comet assay is the most common and reliable method to study DNA strand breaks at the single-cell level. This procedure is based on the electrophoresis of agarose-embedded lysed cells. Following the electrophoretic mobilization of DNA, it is stained with fluorescent DNA-binding dye. Broken DNA strands migrate based on fragment size and form a tail-like structure called “the comet,” whereas intact nuclear DNA remains a part of the head of the comet. Since the alkaline comet assay fails to differentiate between single and double-strand breaks (DSBs), we used a neutral comet assay to quantitate the DSBs in HSCs upon aging and other physiological stresses. The protocol presented here provides procedural details on this highly sensitive, rapid, and cost-effective assay, which can be used for rare populations of cells such as HSCs.

Graphical abstract:


The neutral comet assay is an extremely useful tool that allows the detection and quantitation of double-strand DNA breaks at the single-cell level. The graphical abstract represents a flowchart for the neutral comet assay procedure.


1 Q&A 6547 Views Feb 20, 2020
Since their discovery, mesenchymal stromal cells (MSCs) have received a lot of attention, mainly due to their self-renewal potential and multilineage differentiation capacity. For these reasons, MSCs are a useful tool in cell biology and regenerative medicine. In this article, we describe protocols to isolate MSCs from bone marrow (BM-MSCs) and adipose tissues (AT-MSCs), and methods to culture, characterize, and differentiate MSCs into osteoblasts, adipocytes, and chondrocytes. After the harvesting of cells from bone marrow by flushing the femoral diaphysis and enzymatic digestion of abdominal and inguinal adipose tissues, MSCs are selected by their adherence to the plastic tissue culture dish. Within 7 days, MSCs reach 70% confluence and are ready to be used in subsequent experiments. The protocols described here are easy to perform, cost-efficient, require minimal time, and yield a cell population rich in MSCs.
0 Q&A 5884 Views Nov 5, 2018
Endothelial cells (ECs) sustain the self-renewal and regeneration of adult hematopoietic stem and progenitor cells (HSPCs) via deployment of EC-derived paracrine factors, termed as angiocrine factors. Generation of durable ex vivo vascular niche that maintains EC identity and preserves the angiocrine profile of organ of origin offers platforms for in vitro dissection of the mechanism by which angiocrine factors execute their instructive function for stem cell maintenance and tissue regeneration. This protocol describes detailed methods to isolate primary bone marrow ECs (BMECs), to subsequently transduce lentiviral vector carrying myristoylated-Akt1 into primary BMECs, and to use the Akt1-BMECs to expand engraftable murine HSPCs. The BMEC-HSPC co-culture system serves as bioreactor prototype to generate scalable populations of the blood and immune systems.
0 Q&A 7114 Views May 20, 2018
The ability to conduct investigation of cellular transcription, signaling, and function at the single-cell level has opened opportunities to examine heterogeneous populations at unprecedented resolutions. Although methods have been developed to evaluate high-dimensional transcriptomic and proteomic data (relating to cellular mRNA and protein), there has not been a method to evaluate corresponding high-dimensional functionomic data (relating to cellular functions) from single cells. Here, we present a protocol to quantitatively measure the differentiation potentials of single human hematopoietic stem and progenitor cells, and then cluster the cells according to these measurements. High dimensional functionomic analysis of cell potential allows cell function to be linked to molecular mechanisms within the same progenitor population.
0 Q&A 6347 Views May 20, 2018
Osteoblasts are bone marrow endosteum-lining niche cells playing important roles in the regulation of hematopoietic stem cells by secreting factors and cell adhesion molecules. Characterization of primary osteoblasts has been achieved through culture of outgrowth of collagenase treated bone. Immunophenotyping and flow-based analysis of long bone osteoblasts offer a simplified and rapid approach to characterize osteoblasts. We describe a modified procedure of isolating mouse bone marrow osteoblastic cells based on cell surface immunophenotyping. The chemokine CXCL12 (also known as stromal-derived factor, SDF-1) together with its receptor CXCR4 are expressed by osteoblasts and bone marrow stroma cells. The CXCL12-CXCR4 axis is important for hematopoietic stem cell retention to their niches (Sugiyama et al., 2006) and for supporting leukemia initiating cell activity (Pitt et al., 2015). Here we describe the procedure of intracellular staining of CXCL12.
0 Q&A 9147 Views May 5, 2018
Bone Marrow Hematopoietic Stem Cells (HSCs) require bone marrow microenvironment for their maintenance and proliferation. Culture of Bone Marrow Mesenchymal Stromal Cells (MSCs) provides appropriate environmental signals for HSCs survival in vitro. Here, we provide a detailed protocol that describes culture conditions for MSCs, flow cytometric isolation of HSCs from mouse bone marrow, and perform co-culture of MSCs and HSCs known as Cobblestone area-forming cell (CAFC) assay. Altogether, CAFC assays can be used as a high-throughput in vitro screening model where efforts are made to understand and develop therapies for complex bone marrow diseases. This protocol needs 3 to 4 weeks starting from culturing MSCs, isolating LSK cells (HSCs), and to performing limited dilution CAFC assay.
0 Q&A 10496 Views Feb 20, 2017
Hematopoietic stem cells (HSCs) are defined by their functional abilities to self-renew and to give rise to all mature blood and immune cell types throughout life. Most HSCs are retained in a non-motile quiescent state within a specialized protective microenvironment in the bone marrow (BM) termed the niche. HSCs are typically distinguished from other adult stem cells by their motility capacity. Movement of HSCs across the physical barrier of the marrow extracellular matrix and blood vessel endothelial cells is facilitated by suppression of adhesion interactions, which are essential to preserve the stem cells retained within their BM niches. Importantly, homing of HSCs to the BM following clinical transplantation is a crucial first step for the repopulation of ablated BM as in the case of curative treatment strategies for hematologic malignancies. The homing process ends with selective access and anchorage of HSCs to their specialized niches within the BM. Adhesion molecules are targets to either enhance homing in cases of stem cell transplantation or reduce BM retention to harvest mobilized HSCs from the blood of matched donors. A major adhesion protein which is functionally expressed on HSCs and is involved in their homing and retention is the integrin alpha4beta1 (Very late antigen-4; VLA4). In this protocol we introduce an adhesion assay optimized for VLA4 expressing murine bone marrow stem cells. This assay quantifies adherent HSCs by flow cytometry with HSC enriching cell surface markers subsequent to the isolation of VLA4 expressing adherent cells.
0 Q&A 7600 Views Feb 20, 2017
Hematopoietic stem cells (HSCs) are defined by their functional ability to self-renew and to differentiate into all blood cell lineages. The majority of HSC reside in specific anatomical locations in the bone marrow (BM) microenvironment, in a quiescent non motile mode. Adhesion interactions between HSCs and their supporting BM microenvironment cells are critical for maintaining stem cell quiescence and protection from DNA damaging agents to prevent hematology failure and death. Multiple signaling proteins play a role in controlling retention and migration of bone marrow HSCs. Adhesion molecules are involved in both processes regulating hematopoiesis and stem- and progenitor-cell BM retention, migration and development. The mechanisms underlying the movement of stem cells from and to the marrow have not been completely elucidated and are still an object of intense study. One important aspect is the modification of expression and affinity of adhesion molecules by stem and progenitor cells which are required both for stem cell retention, migration and development. Adhesion is regulated by expression of the adhesion molecules, their affinity and avidity. Affinity regulation is related to the molecular binding recognition and bond strength. Here, we describe the in vitro FACS assay used in our research to explore the expression, affinity and function of the integrin α4β1 (also termed VLA-4) for murine bone marrow retained EPCR+ long term repopulation HSC (LT-HSC) (Gur-Cohen et al., 2015).
0 Q&A 10514 Views Nov 5, 2015
Mesenchymal stromal cells (MSCs) are non-hematopoietic, perivascular cells which support hematopoiesis and are thought to participate in tissue repair in vivo. MSCs can be isolated from various tissues and organs and are defined in vitro as plastic adherent cells expressing CD73, CD90, CD105 (human MSCs) or CD29, CD44, sca-1 (murine MSCs) which can differentiate into osteoblasts, adipocytes, chondroblasts and myocytes. MSCs possess potent immunomodulatory and trophic capacities in vitro and in vivo and have thus emerged as a promising treatment of inflammatory/autoimmune diseases. The use of MSCs for human disease relies on the injection of a large number of cells and much effort has been focused on acquiring MSCs with high proliferative capacity. Thus, establishing simple and accurate protocols for measuring MSC proliferation is of importance for both basic and applied research. The current protocol provides details on how to isolate and measure the proliferation of murine MSCs derived from inguinal and/or intraabdominal adipose tissue (mASCs) using the xCELLigence system and CellTiter-Blue reagent (Carrillo-Galvez et al., 2015; Anderson et al., 2013). The protocols described below can also be easily translated to human MSCs.