The ratio between wet and dry friction coefficients was calculated on the basis of the assumption that the contribution of dry-on-dry contacts to the wet friction coefficient was negligible. Shear stress in the liquid is equal to shear stress in the material. Thus, τ=FA=μFNA=ηUh. This way, we found a relation for the friction coefficientμ=ηUAhFN(3)where η is the estimated viscosity, U is the sliding speed, A is the load-bearing area, h is the average thickness of the liquid, and FN is the normal force.

As the viscosity was estimated on the basis of ΛI and to compare data with the measurements in Fig. 3B, we plot the predicted ratio of dry and wet friction coefficients as a function of ΛI (see fig. S6).

注意:以上内容是从某篇研究文章中自动提取的,可能无法正确显示。



Q&A
请登录并在线提交您的问题
您的问题将发布在Bio-101网站上。我们会将您的问题发送给本研究方案的作者和具有相关研究经验的Bio-protocol成员。我们将通过您的Bio-protocol帐户绑定邮箱进行消息通知。