First, a nickel conductive tape was used to fabricate well-designed flexible conductive path through a facile digital laser processing technique. SilkNCT was clipped into small round pieces. Then, the flexible conductive path was transferred onto a flexible PET substrate. Traditional three-electrode configuration was constructed for amperometric sensors with the clipped SilkNCT (obtained at 900°C) pieces for working electrodes, SilkNCT (obtained at 1050°C) pieces as counter electrodes, and the Ag/AgCl ink–modified conductive tape as reference electrodes. SilkNCT obtained at 1050°C was selected as the counter electrode due to its relatively higher electrical conductivity compared with SilkNCT obtained at lower temperature. The two-electrode system, with the small SilkNCT (obtained at 900°C) piece as the working electrode and Ag/AgCl as the reference electrode, was designed for ion-selective sensors. Considering the low concentration of biomarkers in sweat, we designed the final electrode with a diameter of 3 mm to obtain a high current. After the sensor array design was finished, Ecoflex was used as an insulating layer to prevent the possible electrical contact of the conductive path with skin and sweat.