干细胞


分类

现刊
往期刊物
0 Q&A 434 Views Oct 5, 2023

Adult neural stem/progenitor cells (NSPCs) in two neurogenic areas of the brain, the dentate gyrus and the subventricular zone, are major players in adult neurogenesis. Addressing specific questions regarding NSPCs outside of their niche entails in vitro studies through isolation and culture of these cells. As there is heterogeneity in their morphology, proliferation, and differentiation capacity between these two neurogenic areas, NSPCs should be isolated from each area through specific procedures and media. Identifying region-specific NPSCs provides an accurate pathway for assessing the effects of extrinsic factors and drugs on these cells and investigating the mechanisms of neurogenesis in both healthy and pathologic conditions. A great number of isolation and expansion techniques for NSPCs have been reported. The growth and expansion of NSPCs obtained from the dentate gyrus of aged rats are generally difficult. There are relatively limited data and protocols about NSPCs isolation and their culture from aged rats. Our approach is an efficient and reliable strategy to isolate and expand NSPCs obtained from young adult and aged rats. NSPCs isolated by this method maintain their self-renewal and multipotency.


Key features

• NSPCs isolated from the hippocampal dentate gyrus of young adult and aged rats, based on Kempermann et al. (2014) and Aligholi et al. (2014).

• Maintenance of NSPCs isolated from the dentate gyrus of aged rats (20–24 months) in our culture condition is feasible.

• According to our protocol, maximum growth of primary neurospheres obtained from isolated NSPCs of young and aged rats took 15 and 35 days, respectively.


Graphical overview



Isolation and expansion of neural stem/progenitor cells

0 Q&A 339 Views Sep 5, 2023

Adult stem cells play key roles in homeostasis and tissue repair. These cells are regulated by a tight control of transcriptional programs. For example, muscle stem cells (MuSCs), located beneath the basal lamina, exist in the quiescent state but can transition to an activated, proliferative state upon injury. The control of MuSC state depends on the expression levels of myogenic transcription factors. Recent studies revealed the presence of different mRNA isoforms, with distinct biological regulation. Quantifying the exact expression levels of the mRNA isoforms encoding these myogenic transcription factors is therefore key to understanding how MuSCs switch between cell states. Previously, quantitative real-time polymerase chain reaction (qRT-PCR) has been used to quantify RNA expression levels. However, qRT-PCR depends on large amounts of RNA input and only measures relative abundance. Here, we present a protocol for the absolute quantification of mRNA isoforms using microfluidic digital PCR (mdPCR). Primary MuSCs isolated from individual skeletal muscles (gastrocnemius and masseter) are lysed, and their RNA is reverse-transcribed into cDNA and copied into double-stranded DNA. Following exonuclease I digestion to remove remaining single-stranded DNA, the samples are loaded onto a mdPCR chip with TaqMan probes targeting the mRNA isoforms of interest, whereupon target molecules are amplified in nanoliter chambers. We demonstrate that mdPCR can give exact molecule counts per cell for mRNA isoforms encoding the myogenic transcription factor Pax3. This protocol enables the absolute quantification of low abundant mRNA isoforms in a fast, precise, and reliable way.


Graphical overview



Schematic overview of the workflow. (A) Isolation of individual muscles (gastrocnemius and masseter) from C57/BL6 mice followed by digestion using collagenase II and dispase. (B) Sorting of 500 cells directly into PCR tubes using fluorescence-activated cell sorting (FACS). (C) Reverse transcription of mRNA to cDNA. (D) Polymerase reaction to generate a duplicated cDNA product. (E) Exonuclease I digestion to remove remaining single-stranded DNA and the non-hybridized primers. (F) Denaturation step to inactivate exonuclease I. (G) Loading the samples into the microfluidic chip. (H) Running the TaqMan Digital PCR assay in the Fluidigm Biomark HD real-time PCR machine. (I) Data analysis using the Digital PCR software.

0 Q&A 731 Views Mar 5, 2023

In mammals, the skin comprises several distinct cell populations that are organized into the following layers: epidermis (stratum corneum, stratum granulosum, stratum spinosum, and basal layer), basement membrane, dermis, and hypodermal (subcutaneous fat) layers. It is vital to identify the exact location and function of proteins in different skin layers. Laser capture microdissection (LCM) is an effective technique for obtaining pure cell populations from complex tissue sections for disease-specific genomic and proteomic analysis. In this study, we used LCM to isolate different skin layers, constructed a stratified developmental lineage proteome map of human skin that incorporates spatial protein distribution, and obtained new insights into the role of extracellular matrix (ECM) on stem cell regulation.

0 Q&A 1290 Views Jul 20, 2022

Limbal mesenchymal stromal cells (LMSC), a cellular component of the limbal stem cell niche, have the capability of determining the fate of limbal epithelial progenitor cells (LEPC), which are responsible for the homeostasis of corneal epithelium. However, the isolation of these LMSC has proven to be difficult due to the small fraction of LMSC in the total limbal population, and primary cultures are always hampered by contamination with other cell types. We recently published the efficient isolation and functional characterization of LMSC from the human corneal limbus using CD90 as a selective marker. We observed that flow sorting yielded a pure population of LMSC with superior self-renewal capacity and transdifferentiation potential, and supported the maintenance of the LEPC phenotype. Here, we describe an optimized protocol for the isolation of LMSC from cadaveric corneal limbal tissue by combined collagenase digestion and flow sorting with expansion of LMSC on plastic.


Graphical abstract:




0 Q&A 1823 Views Jun 5, 2022

Transplantation of hematopoietic material into recipient mice is an assay routinely used to determine the presence and function of hematopoietic stem and progenitor cells (HSPCs) in vivo. The principle of the method is to transplant donor cells being tested for HSPCs into a recipient mouse following bone marrow ablation and testing for reconstitution of hematopoiesis. Congenic mouse strains where donor and recipient differ by a distinct cell surface antigen (commonly CD45.1 versus CD45.2) are used to distinguish between cells derived from the donor and any residual recipient cells. Typically, the transplantation is performed using bone marrow cells, which are enriched for HSPCs. Here, we describe an analogous procedure using hematopoietic material from spleen, allowing detection of functional progenitors and/or stem cells in the spleen that can occur under certain pathologies. Key to the success of this procedure is the prior removal of mature T cells from the donor sample, to minimize graft versus host reactions. As such, this protocol is highly analogous to standard bone marrow transplant procedures, differing mainly only in the source of stem cells (spleen rather than bone marrow) and the recommendation for T cell depletion to avoid potential immune incompatibilities.


Graphical abstract:



Schematic overview for assessment of stem cells in spleen by transplantation.
Single cell suspensions from spleens are depleted of potentially pathogenic mature T lymphocytes by magnetic bead immunoselection using biotinylated antibodies against CD4 and CD8, followed by streptavidin magnetic beads, which are subsequently removed by using a magnet (MojoSort, Biolegend). Successful T cell depletion is then evaluated by Fluorescence Activated Cell Sorting (FACS). T-cell depleted cell suspension is injected intravenously through the retro-orbital sinus into lethally irradiated recipients. Recipients are analyzed for successful engraftment by FACS analysis for the presence of donor-derived mature hematopoietic lineages in the peripheral blood. A second serial transplantation can be used to document the presence of long-term reconstituting stem cells in the periphery of the original donor mice.


1 Q&A 1727 Views Apr 5, 2022

Craniofacial anomalies (CFA) are a diverse group of deformities, which affect the growth of the head and face. Dysregulation of cranial neural crest cell (NCC) migration, proliferation, differentiation, and/or cell fate specification have been reported to contribute to CFA. Understanding of the mechanisms through which cranial NCCs contribute for craniofacial development may lead to identifying meaningful clinical targets for the prevention and treatment of CFA. Isolation and culture of cranial NCCs in vitro facilitates screening and analyses of molecular cellular mechanisms of cranial NCCs implicated in craniofacial development. Here, we present a method for the isolation and culture of cranial NCCs harvested from the first branchial arch at early embryonic stages. Morphology of isolated cranial NCCs was similar to O9-1 cells, a cell line for neural crest stem cells. Moreover, cranial NCCs isolated from a transgenic mouse line with enhanced bone morphogenetic protein (BMP) signaling in NCCs showed an increase in their chondrogenic differentiation capacity, suggesting maintenance of their in vivo differentiation potentials observed in vitro. Taken together, our established method is useful to visualize cellular behaviors of cranial NCCs.

0 Q&A 1767 Views Mar 5, 2022

Skeletal stem cells residing in the suture mesenchyme are responsible for calvarial development, homeostatic maintenance, and injury-induced repair. These naïve cells exhibit long-term self-renewal, clonal expansion, and multipotency. They possess osteogenic abilities to regenerate bones in a cell-autonomous manner and can directly replace the damaged skeleton. Therefore, the establishment of reliable isolation and culturing methods for skeletal stem cells capable of preserving their stemness promises to further explore their use in cell-based therapy. Our research team is the first to isolate and purify skeletal stem cells from the calvarial suture and demonstrate their potent ability to generate bone at a single-cell level. Here, we describe detailed protocols for suture stem cell (SuSC) isolation and stemness maintenance in culture. These methods are extremely valuable for advancing our knowledge base of skeletal stem cells in craniofacial development, congenital deformity, and tissue repair and regeneration.

0 Q&A 3084 Views Jan 20, 2022

In the expanding field of intestinal organoid research, various protocols for three- and two-dimensional organoid-derived cell cultures exist. Two-dimensional organoid-derived monolayers are used to overcome some limitations of three-dimensional organoid cultures. They are increasingly used also in infection research, to study physiological processes and tissue barrier functions, where easy experimental access of pathogens to the luminal and/or basolateral cell surface is required. This has resulted in an increasing number of publications reporting different protocols and media compositions for organoid manipulation, precluding direct comparisons of research outcomes in some cases. With this in mind, here we describe a protocol aimed at the harmonization of seeding conditions for three-dimensional intestinal organoids of four commonly used research species onto cell culture inserts, to create organoid-derived monolayers that form electrophysiologically tight epithelial barriers. We give an in-depth description of media compositions and culture conditions for creating these monolayers, enabling also the less experienced researchers to obtain reproducible results within a short period of time, and which should simplify the comparison of future studies between labs, but also encourage others to consider these systems as alternative cell culture models in their research.


Graphic abstract:



Schematic workflow of organoid-derived monolayer generation from intestinal spheroid cultures. ECM, extracellular matrix; ODM, organoid-derived monolayer.


0 Q&A 1894 Views Jan 5, 2022

Muscle stem cells (satellite cells), located on the surface of myofibers, are rapidly activated from a quiescent state following skeletal muscle injury. Although satellite cell activation is an initial step in muscle regeneration, the stimulation of satellite cell activation by muscle injury remains to be elucidated. We recently established an in vitro mechanical damage model of myofibers, to analyze quiescent and activated satellite cells associated with myofibers isolated from the extensor digitorum longus muscle in mice. Here, we described a protocol for the mechanical damage of myofibers and co-culture of intact healthy myofibers with damaged myofibers in a floating condition. This in vitro myofiber damage model allowed us to investigate the mechanism of satellite cell activation without contamination by interstitial cells, such as blood vessel cells and fibroblasts, as well as understand how damaged myofiber-derived factors (DMDFs) activate satellite cells.


0 Q&A 2455 Views Dec 5, 2021

Satellite cells (SCs) are muscle stem cells capable of regenerating injured muscle. The study of their functional potential depends on the availability of methods for the isolation and expansion of pure SCs, which retain myogenic properties after serial passages in vitro. Here, we describe a protocol for the isolation and in vitro expansion of highly pure mouse and human SCs based on ice-cold treatment (ICT). The ICT is carried out by briefly incubating the dish containing a heterogeneous mix of adherent muscle mononuclear cells on ice for 15-30 min, which leads to the detachment only of the SCs, and gives rise to SC cultures with 95-100% purity. This approach can also be used to passage the cells, allowing SC expansion over extended periods of time without compromising their proliferation or differentiation potential. Overall, the ICT method is cost-effective, accessible, technically simple, reproducible, and highly efficient.


Graphic abstract:



Figure 1. Satellite cell isolation using the ice-cold treatment method.