参见作者原研究论文

本实验方案简略版
May 2021

本文章节


 

Analysis of Soluble Sugar Content in Minute Quantities of Rice Tissues by GC-MS
气质联用技术分析水稻组织中微量可溶性糖含量   

引用 收藏 提问与回复 分享您的反馈 Cited by

Abstract

Soluble sugars play key roles in plant growth, development, and adaption to the environment. Characterizing sugar content profiling of plant tissues promotes our understanding of the mechanisms underlying these plant processes. Several technologies have been developed to quantitate soluble sugar content in plant tissues; however, it is difficult with only minute quantities of plant tissues available. Here, we provide a detailed protocol for gas chromatography mass spectrometry (GC-MS)-based soluble sugar profiling of rice tissues that offers a good balance of sensitivity and reliability, and is considerably more sensitive and accurate than other reported methods. We summarize all the steps from sample collection and soluble sugar extraction to derivatization procedures of the soluble extracted sugars, instrumentation settings, and data analysis.

Keywords: GC-MS (气相色谱-质谱联用技术), Soluble sugars (可溶性糖), Sucrose (蔗糖), Fructose (果糖), Glucose (葡萄糖)

Background

Sucrose, as the major product of photosynthesis in plants, is transported from sources to sinks by three steps, phloem loading, long-distance transport in phloem, and phloem unloading, which are mediated by both plasmodesmata and sugar transporters (Zhu et al., 2013; Milne et al., 2018). Sucrose is then transformed into other sugars such as glucose and fructose. These soluble sugars are involved in energy and material metabolism and signaling, plant growth and development, and plant responses to biotic and abiotic stresses (Bezrutczyk et al., 2018; Yamada and Osakabe, 2018; Wei et al., 2020). On the other hand, pests regulate plant sugar partitioning to facilitate their infection of, and damage to, plants (Hofmann et al., 2009; Ibraheem et al., 2014; Sosso et al., 2019). It is highly beneficial for researchers to understand the mechanisms of plant-pest interactions in order to investigate changes in soluble sugar content of plant tissues during pest infection or damage.


Several methods have been developed to quantitate soluble sugars, such as the anthrone-sulfuric acid colorimetric method, high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS) (Montero et al., 2004; Jan et al., 2006; Magwaza and Opara, 2015; Ye et al., 2019). Among these methods, LC-MS and GC-MS are widely used for sugar quantitation. In comparison with LC, GC shows higher resolution at the high-performance level; although, a dervatization step is needed to convert sugars into volatile compounds (Romani et al., 1994; Cataldi et al., 2000). It has been reported that approximately 50 mg fresh weight of leaves and roots from two-year-old olive plants can be used to quantitate the soluble sugar content of these tissues by GC-MS (Cataldi et al., 2000), which, as we learned, is the highest sensitivity of GC-MS used in characterizing soluble sugar content of plant tissues. Here, we describe in detail a new GC-MS protocol, with some important modifications, that is able to quantitate the three soluble sugars, sucrose, glucose, and fructose, in plant tissues with approximately 15 mg fresh weight. This method was modified by us and has been successfully applied in our current work.


Materials and Reagents

  1. 1.5-ml centrifuge tubes (Axygen, catalog number: AXYMCT150C)

  2. 2.0-ml centrifuge tubes (Axygen, catalog number: AXYMCT200C)

  3. Rice (Oryza sativa cv Nipponbare)

  4. Liquid nitrogen

  5. Methoxyamine hydrochloride (98%, Sigma-Aldrich, catalog number: 226904-1G)

  6. Pyridine (Macklin, catalog number: P816290)

  7. N-methyl-N-(trimethylsilyl)trifluoroacetamide (Santa Cruz Biotechnology, catalog number: 24589-78-4)

  8. Fructose (Shanghai Yuanye Bio-Technology Co., Ltd, catalog number: B21896)

  9. Glucose (Sigma-Aldrich, catalog number: G7528)

  10. Sucrose (DR EHRENSTRORFER, catalog number: CDCT-C16901100)

  11. Ribitol (99%, Sigma-Aldrich, catalog number: A5502-5G)

  12. Helium gas (v/v ≥ 99.999%, Gassoon)

  13. Methoxyamine hydrochloride solution (see Recipes)

  14. Internal standard solution (see Recipes)

Equipment

  1. Gas chromatograph (SHIMADZU, model: GAS CHROMATOGRAPH GC-2010 Plus)

  2. Glas-Col evaporator (Guangzhou Pengxin Technology, model: FD5-series).

  3. SH-Rxi-5Sil MS Cap (SHIMADZU, catalog number: R221-75954-30)

  4. Auto sampler vials with caps (Agilgent, catalog number: 5182-0715)

  5. Glass inserts (BioReags, catalog number: 571200)

  6. Centrifuge (Eppendorf, model: Centrifuge 5424 R)

  7. Vortex (Haimen Kylin-Bell, model: QL-901)

  8. Vacuum freeze drier (Gold Sim, model: FD5-series freeze dryer)

  9. 1-ml transfer pipettes (Axygen, catalog number: T-1000-B)

  10. 200-μl transfer pipettes (Crystalgen, catalog number: 23-2346)

Software

  1. GC-MSsolution software (Shimadzu GC-MS QP-2010)

  2. NIST17 mass spectra search program (version 2d, build 2017) (National Institute of Standards and Technology, Gaithersburg, MD)

  3. Microsoft Excel

Procedure

  1. Sample handling

    1. Sample fresh rice root tissue from 15-day-old rice seedlings (approximately 15 mg fresh weight per sample) and transfer to a 2-ml tube. Grow the rice seedlings under a 12 h/12 h light/dark cycle with 75% relative humidity, a light intensity of 110 μmol·m-2·s-1, and a temperature of 28°C.

    2. Immediately freeze root samples in liquid nitrogen and grind thoroughly using a pestle and mortar.

    3. Add 1.5 ml 75% methanol to each tube and vortex briefly.

    4. Place the samples in an incubator at 70°C for 15 min and then centrifuge at 10,000 × g for 10 min at room temperature.

    5. For each sample, transfer 1.2 ml supernatant to a 1.5-ml tube.

    6. Add 100 μl ribitol (50 μg/ml, as an internal standard) to each tube and vortex briefly, then centrifuge at 10,000 × g for 30 s at room temperature.

    7. Dry samples in a vacuum freeze drier.

      Note: Samples need to be thoroughly dried before the following derivatization.

    8. Add 50.0 μl methoxyamine hydrochloride to each tube to dissolve the samples, pipette up and down several times, and centrifuge at 10,000 × g for 2 min at room temperature.

    9. Transfer the solutions from the tubes to an auto sampler vial with a glass insert.

    10. Place the samples in an incubator at 65°C for 2 h.

    11. Add 50.0 μl N-methyl-N-(trimethylsilyl) trifluoroacetamide to each auto sampler vial and place in an incubator at 65°C for another 2 h.

      Note: Perform the derivatization at 65°C (Steps A10 and A11) instead of a lower temperature; this is necessary for quantitating sugar content in minute quantities of rice tissues by GC-MS and significantly increases the sensitivity and accuracy of this method.

    12. Analyze the samples by GC-MS.


  2. Instrument Parameters

    1. Set the GC parameters as follows: Carrier gas, helium (61.3 kPa); gas flow rate, 30 ml/min; GC interface temperature, 230°C.

    2. GC oven temperature gradient program: Begin at 70°C; hold at 70°C for 2 min; ramp to 200°C at a rate of 5°C/min; hold at 200°C for 3 min; ramp to 300°C at a rate of 10°C/min; hold at 300°C for 3 min. Total run time: 44 min.

    3. MS parameters: Source temperature, 250°C; mass-to-charge ratio (m/z) range, 60-600; scanning speed, 0.4 scans/s; ionization energy, 70 eV.

    Note: The above instrumental parameters are based on the Shimadzu GC-MS QP-2010, which may be different and require modification when using a different GC-MS instrument.

Data analysis

The four standard compounds, fructose, glucose, sucrose, and ribitol, are analyzed by GC-MS, where both the GC-MS solution software and the NIST17 mass spectra search program are used to confirm the peak assignments and obtain the retention times (see Figure 1). Results are reported as ‘‘Positive’’ when the final concentrations of the target sugars extracted from rice tissues range from 2.5 μg/ml to 500.0 μg/ml.

Note: For peak quantitation, the chromatographic integral (CI) of a target sugar was normalized to the CI of ribitol of the same sample (CItarget sugar/CIribitol); The normalized CI of the target sugar is used in the comparison of the target sugar content among different samples; The correlation coefficients of calibration curves developed should be higher than 0.97, approximately 15 mg fresh weight of rice tissues should yield reliable data. The final sugar concentrations are reliable in the range of 2.5-500.0 μg/ml.



Figure 1. Chromatograms of ribitol and the three soluble sugars in the tested samples. (A) Chromatograms of ribitol and sucrose, indicated by the green and blue asterisk, respectively. (B) Chromatograms of ribitol and glucose, indicated by the green and voilet asterisk, respectively. (C) Chromatograms of ribitol and fructose, indicated by the green and red asterisk, respectively. (D) Chromatograms of ribitol and the three sugars (sucrose, glucose, and fructose) extracted from rice roots, marked with the colored asterisks as described above.

Recipes

  1. Methoxyamine hydrochloride solution

    Dissolve 15 mg methoxyamine hydrochloride in 1.0 ml pyridine. It must be freshly prepared and used at room temperature.

  2. Internal standard solution

    Prepartion of the internal standard (50 μg/ml ribitol): Dissolve 1.0 mg ribitol in 20 ml deionized water and vortex briefly. Store at -80°C until use.

Acknowledgments

We acknowledge financial support from the National Nature Science Foundations of China (31501613) and the National Key Research and Development Program of China (2018YFD0201201-4 & 2018YFD0200500). This work was adapted and modified from Xu et al., 2021.

Competing interests

The authors declare no conflicts of interest.

References

  1. Bezrutczyk, M., Yang, J., Eom, J. S., Prior, M., Sosso, D., Hartwig, T., Szurek, B., Oliva, R., Vera-Cruz, C., White, F. F., Yang, B. and Frommer, W. B. (2018). Sugar flux and signaling in plant-microbe interactions. Plant J 93(4): 675-685.
  2. Cataldi, T. R., Margiotta, G., Iasi, L., Di Chio, B., Xiloyannis, C. and Bufo, S. A. (2000). Determination of sugar compounds in olive plant extracts by anion-exchange chromatography with pulsed amperometric detection. Anal Chem 72(16): 3902-3907.
  3. Hofmann, J., Kolev, P., Kolev, N., Daxbock-Horvath, S., Grundler and F. M. W. (2009). The Arabidopsis thaliana sucrose transporter gene AtSUC4 is expressed in Meloidogyne incognita-induced root galls. J Phytopathol 157(4): 256-261.
  4. Ibraheem, O., Botha, C.E.J., Bradley, G., Dealtry, G. and Roux, S. (2014). Rice sucrose transporter1 (OsSUT1) up-regulation in xylem parenchyma is caused by aphid feeding on rice leaf blade vascular bundles. Plant Biol 16(4): 783-791.
  5. Jan, L., Nicolas, S., Joachim, K. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1): 387-396.
  6. Magwaza, L.S. and Opara, U.L. (2015). Analytical methods for determination of sugars and sweetness of horticultural products-A review. Sci Hortic 184: 179-192.
  7. Milne, R.J., Grof, C.P.L. and Patrick, J.W. (2018). Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. Curr Opin Plant Biol 43: 8-15.
  8. Montero, C.M., Dodero, M.C.R., Sanchez, D.A.G. and Barroso, C.G. (2004). Analysis of low molecular weight carbohydrates in food and beverages: A review.Chromatographia 59(1-2): 15-30.
  9. Romani, A., Baldi, A., Tattini, M. and Vincieri, F.F. (1994). Extraction, purification procedures and HPLC-RI analysis of carbohydrates in Olive (Olea-Europaea L) plants. Chromatographia 39(1-2): 35-39.
  10. Sosso, D., van der Linde, K., Bezrutczyk, M., Schuler, D., Schneider, K., Kamper, J. and Walbot, V. (2019). Sugar partitioning between Ustilago maydis and its host Zea mays L during infection. Plant Physiol 179(4): 1373-1385.
  11. Wei, X.Y., Nguyen, S.T.T, Collings, D.A. and McCurdy, D.W. (2020). Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity. J Exp Bot 71(16): 4690-4702.
  12. Xu, L.H., Xiao, L.Y., Peng, D.L., Xiao, X.Q., Huang, W.K., Gheysen, G. and Wang, G.F. (2021). Plasmodesmata play pivotal role in sucrose supply to Meloidogyne graminicola-caused giant cells in rice. Mol Plant Pathol 22(5): 539-550.
  13. Yamada, K. and Osakabe, Y. (2018). Sugar compartmentation as an environmental stress adaptation strategy in plants. Semin Cell Dev Biol 83: 106-114.
  14. Ye, H., Ma, Y.Q., Wang, X., Gao, Y.X., Zhang, K., and Xue, Y. (2019). Determination of soluble sugar from sweet corn cob by microtiter method of the anthrone-sulfuric acid colorimetric assay. Food Sci Technol 44(11): 327-333.
  15. Zhu, X.G., Wang, Y. and Long, S.P. (2013). e-photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis. Plant Cell Environ 36(9): 1711-1727.


简介

[摘要] š oluble糖小号在植物生长,发育中起关键作用,并适应于该环境。表征小号ugar内容分析植物组织中促进我们理解的的机制基本这些工厂流程。一些技术已经发展到QUANTI泰特植物组织中可溶性糖的含量; 然而,只有少量的植物组织可用是很困难的。这里,我们提供一种用于气相色谱-质谱(GC-MS)的详细协议为基础的可溶性糖剖析水稻组织的这一提议š的良好平衡的灵敏度和可靠性,以及我š明显更敏感和准确比其它报道的方法。我们总结所有的从样品采集和可溶性糖的提取与可溶性的衍生化过程的步骤提取的糖,仪表设置,以及数据分析。

[背景] š ucrose ,作为光合作用的植物中的主要产物,是从源到汇由三个步骤输送,韧皮部装载,在韧皮部长途运输,和韧皮部卸,其被两个胞间连丝和糖转运蛋白介导的(诸等人,2013 年;米尔恩等人,2018 年)。小号ucrose被再变换成其它糖,如葡萄糖和果糖。这些可溶性糖是涉及d在能量和物质代谢和信令,植物生长和发育,一个第二植物对生物和非生物胁迫(Bezrutczyk等人,2018;山田和Osakabe,2018;卫。等人,2020) 。在另一方面,害虫小号调节植物糖划分以促进它们感染的,并损坏,植物(霍夫曼等人,2009;易卜拉欣。等人,2014;苏苏。等人,2019) 。这是非常有益的研究人员,以了解植物的机制-害虫相互作用,以便于调查的变化中可溶性糖含量的虫害感染或损伤时植物组织。

几种方法已经被开发,以孔定量泰特可溶性糖小号,如在蒽酮-sulfuric酸比色法,高-高效液相色谱法(HPLC ),液相色谱-质谱法(LC-MS ),和气相色谱-质谱法(GC -MS ) (Montero等人,2004 年;Jan等人,2006 年;Magwaza 和 Opara,2015 年;Ye等人,2019 年)。在这些方法中,LC-MS和GC-MS被广泛用于为糖孔定量吨通货膨胀。在C ompar ISON与LC,在GC显示较高分辨率的高性能水平; 人虽然,一个dervatization步骤是需要转换糖类转化成挥发性化合物(罗姆等人,1994;卡塔尔迪等人,2000) 。据报道,从两个岁橄榄植物的叶和根的约50毫克的鲜重可到孔定量使用泰特可溶性糖含量的这些组织通过GC-MS (卡塔尔迪等人,2000),其作为我们了解到,最高sensitiv两者均表征植物组织中可溶性糖含量的GC-MS的。在这里,我们描述中详细一个新的GC-MS协议,有一些重要的修改,即能够孔定量泰特三个可溶性糖,蔗糖,葡萄糖,果糖,在植物组织中与大约15毫克鲜重。该方法经过我们的改进,已成功应用于我们目前的工作中。

关键字:气相色谱-质谱联用技术, 可溶性糖, 蔗糖, 果糖, 葡萄糖

材料和试剂
 
1. 1.5 -毫升离心管小号(爱思进,目录号:AXYMCT150C)      
2. 2.0 -毫升离心管小号(爱思进,目录号:AXYMCT200C)      
3.水稻(Oryza sativa cv Nipponbare )      
4.液氮      
5.甲氧胺盐酸盐(98%,Sigma-Aldrich,目录号:226904-1G )      
6.吡啶(Macklin,目录号:P816290)      
7. N-甲基-N-(三甲基甲硅烷基)三氟乙酰胺(Santa Cruz Biotechnology ,目录号:24589-78-4 )      
8.果糖(上海原野生物科技有限公司,目录编号:B21896 )      
9.葡萄糖(Sigma-Aldrich ,目录号:G7528)      
10.蔗糖(DR EHRENSTRORFER,目录号: CDCT-C16901100)   
11. Ribitol (99%,Sigma-Aldrich,目录号: A5502-5G )   
12.氦气(v/v ≥ 99.999%, Gassoon )   
13.甲氧胺盐酸盐溶液(见配方)   
14.内标溶液(见配方)   
 
设备
 
G作为色谱仪(SHIMADZU,型号:GAS CHROMATOGRAPH GC-2010 Plus)
Glas- Col e蒸发器(广州鹏欣科技,型号:F D5-系列)。
SH-Rxi-5Sil MS Cap(SHIMADZU,目录号:R221-75954-30)
带盖的自动进样器小瓶(Agilgent ,目录号:5182-0715)
玻璃嵌入小号(BioReags ,目录号:571200)
离心机(Eppendorf,型号:Centrifuge 5 424 R )
涡流(海门麒麟-贝尔,型号:QL-901)
真空冷冻干燥机(Gold Sim,型号:FD5系列冷冻干燥机)
1 - ml 移液管(Axygen ,目录号:T-1000-B)
200 - μl移液管(Crystalgen ,目录号:23-2346)
 
软件
 
GC- MSsolution软件(岛津 GC-MS QP-2010)
NIST17 质谱搜索程序(版本 2d,2017 年版)(美国国家标准与技术研究所,盖瑟斯堡,马里兰州)
微软Excel
 
程序
 
样品处理
样品F从15天龄的水稻幼苗(每个样品约15毫克鲜重),并转移到一个2 RESH稻根组织-毫升管。生长吨,12小时/ 12小时光照/黑暗下他稻苗周期与75%相对湿度,一个的光强度110 μ摩尔·米-2 ·秒-1 ,一个点ND的温度28°C 。
我mmediately FR EEZEř OOT样品在液氮中和GR在d彻底使用杵和研钵。
向每个管中加入1.5 ml 75% 甲醇并短暂涡旋。             
请将S amples在培养箱中在70 ℃下15分钟,然后离心机ë以10,000rpm × g室温下 10 分钟。
对于每个样品,转移1.2毫升上清至1.5 -毫升管。
添加100微升核糖醇(50微克/毫升,作为一个内标)到每个管中,涡流简要地,然后离心机È以10,000 ×克在室温下进行30秒。
d - [R Y样本在真空冷冻干燥机。
注意:样品在进行以下衍生之前需要彻底干燥。
添加50.0微升甲氧基胺盐酸盐,以每管以溶解所述样品,pipett È上下数次,和离心机È以10,000 ×克在室温下2分钟。
牛逼转让(BOT)牛逼,他的解决方案,从管到自动采样瓶中有一个玻璃内衬。
地方吨他样品在培养箱中在65 ℃下2小时。
添加50.0微升的N-甲基-N-(三甲基硅烷基)三氟乙酰胺,以各自动取样管形瓶和地点在培养箱在65 ℃下另外2小时。
注意:在65°C(执行衍生小号TEP小号A10和A11代替较低的温度); 这是必要的孔定量TAT ING糖CON吨在水稻组织的微量通过GC-MS ENT和显著增加sensitiv两者均和ACCURA CY此方法。
分析的样品的GC-MS 。
 
仪器参数
设置 GC 参数如下:C 载气、氦气(61.3 kPa);气体流速,30毫升/分钟;GC 界面温度,230°C。
GC 柱温梯度程序:B 开始于 70°C ;在 70°C 下保持 2 分钟;以 5°C/min 的速度升温至 200°C ;在 200°C 下保持 3 分钟;以 10°C/min 的速度升温至 300°C ;在 300°C 下保持 3 分钟。总运行时间:44 分钟。
MS参数:小号乌尔斯河温度,250℃ ; 质荷比 (m/z) 范围,60 - 600 ;扫描速度,0.4 次扫描/秒;电离能,70 eV。
注意:上面的I nstrumental参数基于岛津GC-MS QP-2010,其中m AY是不同的,并且需要modifi阳离子当使用一个不同的GC-MS仪器。
 
数据分析
 
四个标准化合物,果糖,葡萄糖,蔗糖,和核糖醇,通过GC-MS,其中所述的GC-MS溶液软件和NIST17质谱搜索程序既用于分析以确认峰分配,将获得的保留时间(见图1)。当从大米组织中提取的目标糖的最终浓度范围为 2.5 μg /ml 至 500.0 μg /ml时,结果报告为“阳性” 。
注意:对于峰定量,目标糖的色谱积分 (CI) 归一化为同一样品的核糖醇的CI (CI目标糖/ CI核糖醇);目标糖的归一化CI用于不同样品间目标糖含量的比较;开发应该比0.97高的校准曲线,大约15毫克的米鲜重的相关系数组织SH乌尔德得到可靠的数据。最终糖浓度在2.5 - 500.0 μg /ml范围内是可靠的。
 
图形用户界面,图表,箱线图描述已自动生成
图1 。测试样品中核糖醇和三种可溶性糖的色谱图。
(A)的色谱核糖醇和蔗糖,指示由所述分别绿色和蓝色星号。(B)的色谱图核糖醇和葡萄糖,由所指示的绿色和voilet星号,分别。(C)的色谱核糖醇和果糖,指示由所述分别绿色和红色星号。的(d)色谱核糖醇和三个糖(蔗糖,葡萄糖,果糖)来自稻根中提取,标有颜色编如上所述星号。
 
食谱
 
甲氧胺盐酸盐溶液
将 15 mg甲氧胺盐酸盐溶解在 1.0 ml 吡啶中。它必须新鲜制备并在室温下使用。
内标溶液
内标的制备(50 μg /ml核糖醇):将 1.0 mg核糖醇溶解在 20 ml 去离子水中并短暂涡旋。小号TOR Ë在-80℃下直到使用。
 
致谢
 
我们承认金融支持从在中国国家自然科学基金会(31501613)和中国(2018YFD0201201-4&2018YFD0200500)的国家重点研究发展计划。这项工作是从徐等人那里改编和修改的。, 2021.
 
利益争夺
 
作者宣称没有利益冲突。
 
参考
 
Bezrutczyk , M., Yang, J., Eom , JS, Prior, M., Sosso , D., Hartwig, T., Szurek , B., Oliva, R., Vera-Cruz, C., White, FF, Yang, B. 和Frommer , WB (2018)。植物-微生物相互作用中的糖通量和信号传导。植物学杂志93(4):675-685。
Cataldi , TR, Margiotta , G., Iasi, L., Di Chio , B., Xiloyannis , C. 和 Bufo, SA (2000)。通过带脉冲安培检测的阴离子交换色谱法测定橄榄植物提取物中的糖化合物。肛门化学72(16):3902-3907。
Hofmann, J., Kolev, P., Kolev, N., Daxbock -Horvath, S., Grundler和 FMW (2009)。在拟南芥蔗糖转运蛋白基因AtSUC4在表达根结线虫诱导根虫瘿。J Phytopathol 157 (4): 256-261。
Ibraheem , O., Botha, CEJ, Bradley, G., Dealtry , G.和Roux, S. (2014)。水稻蔗糖转运蛋白1(OsSUT1)在木质部薄壁组织中的上调是由蚜虫以水稻叶片维管束为食引起的。植物生物学16 (4): 783-791。
Jan, L.、Nicolas, S.、Joachim, K. (2006)。基于气相色谱质谱的植物代谢物分析。娜吨Protoc 1(1):387-396。
Magwaza ,LS和Opara ,UL(2015年)。测定园艺产品糖分和甜度的分析方法-综述。科学园艺184 :179-192。
米尔恩、RJ、格罗夫、CPL和帕特里克、JW(2018 年)。韧皮部卸载机制:由细胞通路、它们的电导和汇功能塑造。C urr Opin Plant Biol 43 :8-15。
蒙特罗,CM,多德罗,MCR,桑切斯,DAG 。和巴罗佐,CG (2004)。食品和饮料中低分子量碳水化合物的分析:综述。色谱图59 (1-2):15-30。
Romani, A.、Baldi , A.、Tattini , M.和Vincieri , FF (1994)。提取,p urification p程序与ħ PLC -R我一个的nalysis Ç arbohydrates橄榄(油橄榄-油橄榄L)p lants 。色谱图39 (1-2):35-39。
Sosso , D.、van der Linde, K.、Bezrutczyk , M.、Schuler, D.、Schneider, K.、Kamper , J. 和Walbot , V. (2019)。感染期间黑粉病菌与其宿主玉米之间的糖分配。植物生理学179(4): 1373-1385。
Wei, XY, Nguyen, STT, Collings, DA 。和McCurdy, DW (2020)。蔗糖通过影响韧皮部加载活性来调节拟南芥韧皮部薄壁组织转移细胞的壁向内生长沉积。J Exp Bot 71 (16):4690-4702。
X u, LH, Xiao, LY, Peng, DL, Xiao, XQ, Huang, WK, Gheysen , G. 和 Wang, GF (2021)。Plasmodesmata在为水稻中由禾本科根结线虫引起的巨细胞提供蔗糖方面发挥着关键作用。Mol Plant Pathol 22(5): 539-550。
Yamada, K.和Osakabe , Y.(2018 年)。糖分室作为植物环境胁迫适应策略。Semin Cell Dev Biol 83 :106-114。
Ye, H., M a, YQ ., Wang, X . ,高,ÿ .X。,张,K 。,和Xue , Y. (2019)。蒽酮-硫酸比色法微量滴定法测定甜玉米芯中的可溶性糖。食品科学技术44 (11): 327-333。
Zhu, XG, Wang, Y. 和 Long, SP (2013)。电子光合作用:C3 光合作用的综合动态机制模型:从光捕获到蔗糖合成。植物细胞环境36(9):1711-1727。
登录/注册账号可免费阅读全文
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容,www.bio-protocol.org 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2021 The Authors; exclusive licensee Bio-protocol LLC.
引用:Xu, L., Xiao, L., Xiao, X., Xiao, Y. and Wang, G. (2021). Analysis of Soluble Sugar Content in Minute Quantities of Rice Tissues by GC-MS. Bio-protocol 11(13): e4077. DOI: 10.21769/BioProtoc.4077.
提问与回复
提交问题/评论即表示您同意遵守我们的服务条款。如果您发现恶意或不符合我们的条款的言论,请联系我们:eb@bio-protocol.org。

如果您对本实验方案有任何疑问/意见, 强烈建议您发布在此处。我们将邀请本文作者以及部分用户回答您的问题/意见。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片的形式来说明遇到的问题。

如果您对本实验方案有任何疑问/意见, 强烈建议您发布在此处。我们将邀请本文作者以及部分用户回答您的问题/意见。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片的形式来说明遇到的问题。