参见作者原研究论文

本实验方案简略版
Oct 2017

本文章节


 

Evaluating Working Memory on a T-maze in Male Rats
评估雄性大鼠对T型迷宫的工作记忆   

引用 收藏 提问与回复 分享您的反馈 Cited by

Abstract

Working memory is short-term memory, so temporal improvement does not reflect the consolidation of a memory trace, rather the functionality of the underlying neuronal circuits and molecular signaling cascades. The administration of drugs–either one-time or through daily injection–can elucidate the underlying mechanisms. The T-maze is especially suitable for studying dopamine-dependent working memory, since it is less stressful than other tests, for example, water maze-based paradigms (Bezu et al., 2016 and 2017). Here, we present a training protocol for evaluating the underlying mechanisms that lead to the development of spatial working memory in rats. Our approach uses a T-maze, and it can be used to get high temporal resolution.

Keywords: Learning (学习行为), Behavior (行为), Rats (大鼠), Dopamine (多巴胺), Working memory (工作记忆), T-maze (T型迷宫), Cognition (认知力)

Background

Spatial working memory is a short-time process where spatial information is encoded (Dudchenko, 2004) to influence subsequent behavior. Until now, only a few behavioral paradigms have been developed to test spatial working memory (Wenk, 2001). One of the most commonly used paradigms is the T-maze, which consists of a start arm and two arms arranged in a T-shape. In this paradigm, rats intrinsically tend to switch arm visits during consecutive trials, which suggests the rats remember the first arm that was visited, which is called “spontaneous alternation” (Lalonde, 2002). This tendency can be reinforced by baiting the arms with food when animals are mildly food deprived. Usually, protocols aim to train animals to reach a certain criterion of correct choices before pharmacological treatment starts or to accumulate the results over (Crawley and Goodwin, 1980; Deacon and Rawlins, 2006). We are interested in the role of the dopaminergic system in spatial learning and memory. For this reason, we treat animals with dopamine transporter (DAT) inhibitors, which block the reuptake of dopamine into the synapse and results in an increased concentration of extracellular dopamine. Further, the role of different dopamine receptors, like D1- and D2-like receptors, was elucidated through experiments that used receptor-specific agonists and antagonists. In this protocol, we use the T-maze for studying working memory, because this task is particularly sensitive to changes in the dopaminergic system compared with other working memory tests like water maze-based tasks (Bezu et al., 2017). Our overall goal is to synthesize of new compounds with high specificity to the target molecules and low side effects (Aher et al., 2016; Saroja et al., 2016; Sase et al., 2016; Hussein et al., 2017; Kristofova et al., 2018). Thus, we analyze a variety of brain structures involved in working memory processing, like the hippocampus, septum, basal forebrain, and prefrontal cortex (Chudasama and Robbins, 2004; Gruber et al., 2006) for regulation and modification of molecular signaling molecules and receptor complexes involved in memory processes (Baddeley, 1992). Rats were trained over a three day period, and we did not notice differences between pharmacologically treated rats and control rats that received additional training (up to six days) (Bezu et al., 2017).

Materials and Reagents

  1. Custom made T-maze, made of Acrylic glass GS black (Bilek + Schüll, Vienna, Austria)
  2. Male Sprague-Dawley rats (12-13 weeks old)
    Note: They were bred and maintained in the Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna.
  3. Pharmacological agents
    Note: They were applied in the experimental room since taking the animals to a different location causes novelty stress, that may potentiate the brief stress of intraperitoneal injection that we conducted.
  4. Standard maintenance food (ssniff, R/M-H, Soest, Germany)
  5. Food reward: e.g., food pellets were provided (Dustless Precision Pellets®, Rodent purified diet, 45 mg; Bio-Serv, catalog number: F0021 )
  6. Incidin® Extra N (Ecolab, catalog number: 30 125 30 , PZN 002 357 95)
  7. 1% incidin (see Recipes)

Equipment

  1. Three lamps (LED chip, 20 W) for indirect illumination (mounted on a stand placed 1.3-1.5 m above the floor directed to the ceiling); Illumination within arms: 40-50 lux
  2. Recording camera (video camera, ABUS AUGUST BREMICKER SÖHNE KG, model: EyseoEcoLine, catalog number: TV7003 )
  3. T-maze
    For the apparatus see Figure 1. Reward food pellets were placed outside the T-maze scattered over the table to mask olfactory cues during training. Visual cues (equipment, walls and doors, Figure 1B) were identifiable around the maze. Additional cues like paper printouts of black and white figures were placed on room walls two meters above the floor (Sánchez-Santed et al., 1997). The maze was cleaned with 1% Incidin after the training of each animal to remove olfactory cues. Indirect illumination (from floor to ceiling) provides equal light intensities (40-50 lux) in each arm. Trials were monitored with a camera (mounted on the ceiling directly above the maze- and videos stored on a PC. A freely available video capture program (Debut Video Capture) was used to store the videos on a computer. Paper printouts of figures (210 mm x 279 mm) placed at room walls and equipment served as visual cues.


    Figure 1. T-maze placed on a desk (A) and printouts of external cues placed on experimental room walls (B). Two-goal arms (50 cm long, 10 cm in width, with walls of 25 cm height) and the starting arm (70 cm) could be separated by a guillotine door (A). The maze was placed on a table with a height of 80 cm. The start arm was equipped with a starting box (20 cm in length) separated from the maze by a guillotine door. At the end of each goal arm, reward food pellets were provided in a small plastic cup (30 mm in diameter and 12 mm in height) to mask the food pellet.

Procedure

Note: All experiments are conducted according to the guidelines of the Ethics committee, Medical University of Vienna approved by the Federal Ministry of Education, Science and Culture, Austria. Code number: BMWFW-66.009/0206-WF/V/3b/2015.

  1. Housing
    Rats were housed individually in standard Makrolon cages (type 4, 59 cm x 38 cm and 20 cm in height), the grounds of which were covered with commercial bedding material (autoclaved wood chips). Standard food (ssniff, R/M-H, Soest, Germany) and tap water were given ad libitum until the beginning of handling. The animals were adapted to the testing room place, with the same conditions as in the colony room (22 ± 2 °C; humidity: 55 ± 5%; 12 h artificial light/12 h dark cycle: light on at 7 AM). Rats were adapted to the experimental rooms for at least 24 h before starting the experiment and remained in the experimental room, throughout the entire duration of the experiment.

  2. Animal handling
    1. All experimental procedures start at 9 AM in the light phase (overview in Figure 2).
    2. Pick the rats up by the body (not the tail), and let them set on the experimenter's arm. If the rat becomes agitated, then it should be released and returned to its home cage. Handling is essential to reduce stress effects during experiments, which can severely affect the behavioral outcome of the tests.
    3. Handle each rat for 15 min each day for three consecutive days before habituation. Record the body weight of the animals from the first day of handling throughout the experiment. The animals are mildly food deprived (6 g of standard food per rat/day) during this period to decrease the body weight to 85% of initial free feeding and maintain this throughout the experiment while tap water is given ad libitum. Give 15 reward food pellets in the home cage during the handling days prior to training in order to familiarize the rat with the pellets.
    4. The experimenter stays in the room behind a wall barrier observing the rats on the computer screen connected with the video camera.

  3. Habituation
    Habituate the rats to the T-maze on days 4 and 5. During habituation the rats are allowed to freely explore the maze for 15 min. Food reward pellets are available during habituation. At day 4, scatter 20 pellets over the maze in a short distance to each other in order to let the animals learn that food is available in the maze and to motivate the rat to move forward. At day 5, pellets are located only in the cups at the end of the two-goal arms.

  4. Training
    1. Day 6 is the first day of training. Place the animals in the box of the starting arm and release after 10 sec (Figure 3A).
    2. During the forced trial, place a reward pellet at the end of one randomly selected open arm, block the opposite arm with the guillotine door (Figure 3B).
    3. In the following trial, open both arms but only bait the opposite arm of that arm baited during the forced trial (Figure 3C).
    4. After completion of each trial (Figures 3D-3E) pick up the rats and transfer them to their home cage until the next trial starts (intertrial interval of 5 min).
    5. Place a food reward pellet in the food cup of the arm not previously rewarded.
    6. Record arm entries when the entire animal (including the tail tip) has moved into one arm.
    7. After selection of the unbaited arm, apply a self-correction procedure by keeping the baited arm baited until it is visited, allowing the rat to shift their choice. The food reward remains in its location until it is found and eaten.
    8. Ten trials (including the forced trial) are performed.
    9. At days 7 and 8, repeat Steps D1 to D7 (Figure 2).


      Figure 2. Scheme of the experimental protocol


      Figure 3. Example of a training sequence starting with the forced trial (A-C) followed by a training trial (D-F). A. The rat is waiting for 10 sec in the starting chamber; B. Forced trail; C. The rat is eating the pellet; D-F. The rat in the second trial should always choose the opposite arm of its previous visit, otherwise a memory error is recorded.

    Notes:

    1. The T-maze is cleaned with 1% Incidin between trials to remove any olfactory cues.
    2. It is very useful to measure the time the animal needs to leave the start box until entering an arm (latency) in order to control for possible sensory or motoric side effects of treatment.
    3. If the rat enters the unbaited arm, record a working memory error and place the rat back at the start position without a food reward. Record the number of correct entries into baited arms, number of reentries into unbaited arms (Video 1).
    4. Indirect illumination provides similar light intensities in the three arms (40-50 lux). Higher illumination differences between arms cause a bias of the rat responses to the darker arm since rats prefer dark areas for safety reasons.

      Video 1. T-maze protocol

    Data analysis

    WME (working memory error) = visit of an unbaited arm (each repeated visit is considered as a working memory error)
    Correct choice = visit of a baited arm
    WMI (working memory index) = number of correct choices/number of total trials (Table 1, Figure 4)
    Latency= time to enter one goal arm


    Figure 4. Working memory indices (A) and numbers of working memory errors (WME, B) of three animals

    Table 1. Example of data analysis

    Notes

    If the animals do not move or move very slowly:

    1. Check the home cage for uneaten pellets. If the pellets are not eaten, the rat may not recognize the pellets as familiar food and thereby they will not be motivated to chase for it.
    2. Insufficient body weight loss may cause low motivation to search for food in the maze.
    3. Insufficient habituation.
    4. Excessive fear may be exhibited by individual rats indicated by staying frozen in one place or by defecation and urination. The rat will also squeal when being picked up.

    Recipes

    1. 1% incidin
      Incidin diluted in distilled water (1%)
      Note: It is used for cleaning the maze between trials.

    Acknowledgments

    This protocol was adapted from Bezu et al. (2016 and 2017). The authors have no conflicts of interest or competing interests to declare.

    References

    1. Aher, Y. D., Subramaniyan, S., Shanmugasundaram, B., Sase, A., Saroja, S. R., Holy, M., Hoger, H., Beryozkina, T., Sitte, H. H., Leban, J. J. and Lubec, G. (2016). A novel heterocyclic compound CE-104 enhances spatial working memory in the radial arm maze in rats and modulates the dopaminergic system. Front Behav Neurosci 10: 20.
    2. Baddeley, A. (1992).Working memory. Science 255: 556-559.
    3. Bezu, M., Malikovic, J., Kristofova, M., Engidawork, E., Hoger, H., Lubec, G. and Korz, V. (2017). Spatial working memory in male rats: Pre-experience and task dependent roles of dopamine D1- and D2-Like receptors. Front Behav Neurosci 11: 196.
    4. Bezu, M., Shanmugasundaram, B., Lubec, G. and Korz, V. (2016). Repeated application of Modafinil and Levodopa reveals a drug-independent precise timing of spatial working memory modulation. Behav Brain Res 312: 9-13.
    5. Chudasama, Y. and Robbins, T. W. (2004). Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 29(9): 1628-1636.
    6. Crawley, J. and Goodwin, F. K. (1980). Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2): 167-170.
    7. Deacon, R. M. and Rawlins, J. N. (2006). T-maze alternation in the rodent. Nat Protoc 1(1): 7-12.
    8. Dudchenko, P. A. (2004). An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev 28(7): 699-709.
    9. Gruber, A. J., Dayan, P., Gutkin, B. S. and Solla, S. A. (2006). Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci 20(2): 153-166.
    10. Hussein, A. M., Aher, Y. D., Kalaba, P., Aher, N. Y., Dragacevic, V., Radoman, B., Ilic, M., Leban, J., Beryozkina, T., Ahmed, A., Urban, E., Langer, T. and Lubec, G. (2017). A novel heterocyclic compound improves working memory in the radial arm maze and modulates the dopamine receptor D1R in frontal cortex of the Sprague-Dawley rat. Behav Brain Res 332: 308-315.
    11. Kristofova, M., Aher, Y. D., Ilic, M., Radoman, B., Kalaba, P., Dragacevic, V., Aher, N. Y., Leban, J., Korz, V., Zanon, L., Neuhaus, W., Wieder, M., Langer, T., Urban, E., Sitte, H. H., Hoeger, H., Lubec, G. and Aradska, J. (2018). A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval. Behav Brain Res 343: 83-94.
    12. Lalonde, R. (2002). The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev 26(1): 91-104.
    13. Sánchez-Santed, F., de Bruin, J. P., Heinsbroek, R. P. and Verwer, R. W. (1997). Spatial delayed alternation of rats in a T-maze: effects of neurotoxic lesions of the medial prefrontal cortex and of T-maze rotations. Behav Brain Res 84(1-2): 73-79.
    14. Saroja, S. R., Aher, Y. D., Kalaba, P., Aher, N. Y., Zehl, M., Korz, V., Subramaniyan, S., Miklosi, A. G., Zanon, L., Neuhaus, W., Hoger, H., Langer, T., Urban, E., Leban, J. and Lubec, G. (2016). A novel heterocyclic compound targeting the dopamine transporter improves performance in the radial arm maze and modulates dopamine receptors D1-D3. Behav Brain Res 312: 127-137.
    15. Sase, A., Aher, Y. D., Saroja, S. R., Ganesan, M. K., Sase, S., Holy, M., Hoger, H., Bakulev, V., Ecker, G. F., Langer, T., Sitte, H. H., Leban, J. and Lubec, G. (2016). A heterocyclic compound CE-103 inhibits dopamine reuptake and modulates dopamine transporter and dopamine D1-D3 containing receptor complexes. Neuropharmacology 102: 186-196.
    16. Wenk, G. L. (2001). Assessment of spatial memory using the T maze. Curr Protoc Neurosci Chapter 8: Unit 8 5B.

简介

工作记忆是短期记忆,因此时间改善不能反映记忆痕迹的巩固,而是反映潜在神经元回路和分子信号级联的功能。 药物的管理 - 一次性或通过每日注射 - 可以阐明潜在的机制。 T迷宫特别适合研究多巴胺依赖性工作记忆,因为它比其他测试压力小,例如,基于水迷宫的范例(Bezu et al。,2016和2017)。 在这里,我们提出了一个培训协议,用于评估导致大鼠空间工作记忆发展的潜在机制。 我们的方法使用T迷宫,它可用于获得高时间分辨率。

【背景】空间工作记忆是一个短时间的过程,其中空间信息被编码(Dudchenko,2004)以影响后续行为。到目前为止,只开发了一些行为范例来测试空间工作记忆(Wenk,2001)。最常用的范例之一是T型迷宫,其由起始臂和布置成T形的两个臂组成。在这个范例中,老鼠本质上倾向于在连续试验期间切换手臂访问,这表明大鼠记得第一只被访问的手臂,这被称为“自发交替”(Lalonde,2002)。当动物被温和地剥夺食物时,可以通过用食物诱饵来加强这种趋势。通常,方案旨在训练动物在药物治疗开始之前达到正确选择的某个标准或者累积结果(Crawley和Goodwin,1980; Deacon和Rawlins,2006)。我们感兴趣的是多巴胺能系统在空间学习和记忆中的作用。出于这个原因,我们用多巴胺转运蛋白(DAT)抑制剂治疗动物,这些抑制剂阻断多巴胺重新摄入突触并导致细胞外多巴胺浓度增加。此外,通过使用受体特异性激动剂和拮抗剂的实验阐明了不同的多巴胺受体如D1-和D2-样受体的作用。在这个协议中,我们使用T型迷宫来研究工作记忆,因为与其他工作记忆测试(如基于水迷宫的任务)相比,这项任务对多巴胺能系统的变化特别敏感(Bezu et al。,2017)。我们的总体目标是合成对靶分子具有高度特异性和低副作用的新化合物(Aher et al。,2016; Saroja et al。,2016; Sase et al。,2016; Hussein et al。,2017; Kristofova et al。,2018)。因此,我们分析了工作记忆处理中涉及的各种脑结构,如海马,隔膜,基底前脑和前额皮质(Chudasama和Robbins,2004; Gruber et al。,2006)用于调节和记忆过程中涉及的分子信号分子和受体复合物的修饰(Baddeley,1992)。在三天的时间内训练大鼠,并且我们没有注意到药理学治疗的大鼠和接受额外训练(长达六天)的对照大鼠之间的差异(Bezu 等人,2017)。

关键字:学习行为, 行为, 大鼠, 多巴胺, 工作记忆, T型迷宫, 认知力

材料和试剂

  1. 定制T型迷宫,由亚克力玻璃GS黑色制成(Bilek +Schüll,维也纳,奥地利)
  2. 雄性Sprague-Dawley大鼠(12-13周龄)
    注:它们是在维也纳医科大学实验动物科学与遗传学系生物医学研究核心部门培育和维护的。
  3. 药理学代理人
    注意:它们被应用于实验室,因为将动物带到不同的位置会引起新奇的压力,这可能会加剧我们进行的腹腔注射的短暂压力。
  4. 标准维护食品(ssniff,R / M-H,Soest,德国)
  5. 食物奖励:例如,提供食物颗粒(Dustless Precision Pellets ®,Rodent净化饮食,45毫克; Bio-Serv,目录号:F0021)
  6. Incidin ® Extra N(Ecolab,目录号:30 125 30,PZN 002 357 95)
  7. 1%incidin(见食谱)

设备

  1. 用于间接照明的三盏灯(LED芯片,20 W)(安装在位于天花板上方1.3-1.5米的支架上);手臂内照明:40-50 lux
  2. 录像机(摄像机,ABUS AUGUSTBREMICKERSÖHNEKG,型号:EyseoEcoLine,目录号:TV7003)
  3. T迷宫
    对于该设备,参见图1.将奖励食物颗粒放置在散布在桌子上的T形迷宫外面,以在训练期间掩盖嗅觉提示。视觉提示(设备,墙壁和门,图1B)在迷宫周围是可识别的。另外一些提示,例如黑白图像的纸质打印件被放置在距离地面两米的房间墙壁上(Sánchez-Santed et al。,1997)。在训练每只动物后用1%的Incidin清洁迷宫以去除嗅觉提示。间接照明(从地板到天花板)在每个臂中提供相等的光强度(40-50勒克斯)。试验用相机监控(安装在迷宫上方的天花板上 - 以及存储在PC上的视频。使用免费的视频捕捉程序(Debut Video Capture)将视频存储在计算机上。图形的纸张打印输出(210) mm x 279 mm)放置在室内墙壁和设备上作为视觉提示。


    图1.放置在桌子上的T型迷宫(A)和放置在实验室墙壁上的外部提示打印件(B)。两个目标臂(50厘米长,10厘米宽,带墙壁高度为25厘米)和起始臂(70厘米)可以通过闸门(A)分开。将迷宫放在高度为80厘米的桌子上。起动臂配备有一个起重箱(长20厘米),通过闸门与迷宫隔开。在每个目标臂的末端,奖励食物颗粒放在一个小塑料杯(直径30毫米,高12毫米)中,以掩盖食物颗粒。

程序

注:所有实验均按照奥地利联邦教育,科学和文化部批准的维也纳医科大学伦理委员会的指导方针进行。代码:BMWFW-66.009 / 0206-WF / V / 3b / 2015。

  1. 住房
    将大鼠单独圈养在标准的模克隆笼(4型,59cm×38cm和20cm高)中,其中的地面用商业垫料(高压灭菌的木屑)覆盖。标准食物(ssniff,R / M-H,Soest,德国)和自来水随意给予,直到处理开始。使动物适应于测试室位置,具有与菌落室相同的条件(22±2℃;湿度:55±5%; 12小时人造光/ 12小时黑暗循环:在上午7点开灯)。在开始实验之前,将大鼠适应实验室至少24小时,并在整个实验期间保持在实验室中。

  2. 动物处理
    1. 所有实验程序都在光照阶段的上午9点开始(图2中的概述)。
    2. 从身体(而不是尾巴)挑选老鼠,让它们放在实验者的手臂上。如果老鼠变得激动,那么它应该被释放并返回其家笼。处理对于减少实验期间的压力影响至关重要,这会严重影响测试的行为结果。
    3. 在适应之前连续三天处理每只大鼠每天15分钟。记录整个实验过程中第一天的动物体重。在此期间,动物被温和地食物剥夺(每只大鼠每天6g标准食物)以将体重减少至初始自由进食的85%并在整个实验中保持这一点,同时随意给予自来水。在训练前的处理日期间,在家笼中给予15个奖励食物颗粒,以使大鼠熟悉颗粒。
    4. 实验者留在墙壁后面的房间里观察与摄像机连接的计算机屏幕上的老鼠。

  3. 习惯
    在第4天和第5天使大鼠习惯于T-迷宫。在适应期间,允许大鼠自由探索迷宫15分钟。在适应期间可获得食物奖励颗粒。在第4天,在迷宫上彼此短距离散布20颗颗粒,以便让动物知道迷宫中有食物并且促使大鼠向前移动。在第5天,颗粒仅位于两个目标臂末端的杯子中。

  4. 训练
    1. 第6天是培训的第一天。将动物放入起始臂的盒子中,10秒后释放(图3A)。
    2. 在强制试验期间,在一个随机选择的开放臂的末端放置一个奖励颗粒,用断头台门阻挡对面的手臂(图3B)。
    3. 在接下来的试验中,打开双臂,但只有诱饵在强制试验期间诱饵的另一只手臂诱饵(图3C)。
    4. 在每次试验完成后(图3D-3E)拿起大鼠并将它们转移到它们的笼子中,直到下一次试验开始(间隔5分钟)。
    5. 将食物奖励颗粒放入以前没有奖励的手臂的食物杯中。
    6. 当整个动物(包括尾尖)移动到一只手臂时记录手臂进入。
    7. 在选择未拔出的手臂后,通过保持诱饵臂被诱饵直到它被访问来应用自我修正程序,允许老鼠改变他们的选择。食物奖励保留在其位置,直到被发现和吃掉。
    8. 进行了10项试验(包括强制试验)。
    9. 在第7天和第8天,重复步骤D1到D7(图2)。


      图2.实验方案的方案


      图3.从强制试验开始的训练序列示例(A-C),然后是训练试验(D-F)。 A.大鼠在起始室中等待10秒; B.强迫踪迹; C.老鼠正在吃颗粒; d-F。第二次试验中的老鼠应该总是选择其先前访问的相反手臂,否则会记录内存错误。

注意:

  1. 在试验之间用1%Incidin清洁T型迷宫以去除任何嗅觉提示。
  2. 测量动物离开起始盒直到进入手臂所需的时间(潜伏期)以控制治疗可能的感觉或运动副作用是非常有用的。
  3. 如果老鼠进入未拔出的手臂,记录工作记忆错误并将老鼠放回起始位置而没有食物奖励。记录正确的条目数量到诱饵武器,重新进入未武装武器的数量(视频1)。
  4. 间接照明在三个臂(40-50勒克斯)中提供类似的光强度。由于安全原因,大鼠更喜欢黑暗区域,因此手臂之间较高的光照差异会导致大鼠对较暗手臂的反应偏差。

    视频1

数据分析

WME(工作记忆错误)=访问未操作的手臂(每次重复访问都被视为工作记忆错误)
正确选择=拜访手臂
WMI(工作记忆指数)=正确选择的数量/总试验次数(表1,图4)
延迟=进入一个目标臂的时间


图4.三种动物的工作记忆指数(A)和工作记忆错误数(WME,B)

表1.数据分析示例

笔记

如果动物不移动或移动得非常慢:

  1. 检查家笼是否有未经处理的颗粒。如果不吃颗粒,大鼠可能不会将颗粒识别为熟悉的食物,因此他们不会被激励去追逐它。
  2. 体重减轻不足可能导致在迷宫中寻找食物的动力不足。
  3. 习惯不足。
  4. 通过在一个地方保持冷冻或通过排便和排尿所表明的个体大鼠可以表现出过度的恐惧。被捡起时老鼠也会尖叫。

食谱

  1. 1%incidin
    Incidin用蒸馏水稀释(1%)
    注意:它用于清除试验之间的迷宫。

致谢

该协议改编自Bezu 等人(2016年和2017年)。作者没有利益冲突或竞争利益申报。

参考

  1. Aher,YD,Subramaniyan,S.,Shanmugasundaram,B.,Sase,A.,Saroja,SR,Holy,M.,Hoger,H.,Beryozkina,T.,Sitte,HH,Leban,JJ和Lubec,G。 (2016)。 一种新型杂环化合物CE-104可增强大鼠桡动臂迷宫的空间工作记忆并调节多巴胺能系统。 Front Behav Neurosci 10:20。
  2. Baddeley,A。(1992)。工作记忆。 科学 255:556-559。
  3. Bezu,M.,Malikovic,J.,Kristofova,M.,Engidawork,E.,Hoger,H.,Lubec,G。和Korz,V。(2017)。 雄性大鼠的空间工作记忆:多巴胺D1-和D2-的经验前和任务依赖性作用像受体一样。 Front Behav Neurosci 11:196。
  4. Bezu,M.,Shanmugasundaram,B.,Lubec,G。和Korz,V。(2016)。 反复应用莫达非尼和左旋多巴,揭示了与药物无关的空间工作记忆调节的精确时间。 Behav Brain Res 312:9-13。
  5. Chudasama,Y。和Robbins,T。W.(2004)。 对啮齿动物前额叶皮层的视觉注意力和工作记忆的多巴胺能调节。 神经精神药理学 29(9):1628-1636。
  6. Crawley,J。和Goodwin,F.K。(1980)。 关于苯二氮卓类药物抗焦虑作用的简单动物行为模型的初步报告。 Pharmacol Biochem Behav 13(2):167-170。
  7. Deacon,R。M.和Rawlins,J。N.(2006)。 啮齿动物的T迷宫交替。 Nat Protoc 1(1):7-12。
  8. Dudchenko,P。A.(2004)。 用于测试啮齿动物工作记忆的任务概述。 Neurosci Biobehav Rev 28(7):699-709。
  9. Gruber,A.J.,Dayan,P.,Gutkin,B.S。和Solla,S.A。(2006)。 基底神经节中的多巴胺调节将大门锁定在工作记忆中。 J Comput Neurosci 20(2):153-166。
  10. Hussein,AM,Aher,YD,Kalaba,P.,Aher,NY,Dragacevic,V.,Radoman,B.,Ilic,M.,Leban,J.,Beryozkina,T.,Ahmed,A.,Urban,E 。,Langer,T。和Lubec,G。(2017)。 新型杂环化合物可改善桡侧臂迷宫的工作记忆,并调节额叶皮质中的多巴胺受体D1R Sprague-Dawley大鼠。 Behav Brain Res 332:308-315。
  11. Kristofova,M.,Aher,YD,Ilic,M.,Radoman,B.,Kalaba,P.,Dragacevic,V.,Aher,NY,Leban,J.,Korz,V.,Zanon,L.,Neuhaus, W.,Wieder,M.,Langer,T.,Urban,E.,Sitte,HH,Hoeger,H.,Lubec,G。和Aradska,J。(2018)。 每日单剂量的新型莫达非尼模拟物CE-123可改善记忆获取和记忆检索。 Behav Brain Res 343:83-94。
  12. Lalonde,R。(2002)。 自发交替的神经生物学基础。 Neurosci Biobehav Rev 26(1):91-104。
  13. Sánchez-Santed,F.,de Bruin,J.P.,Heinsbroek,R。P. and Verwer,R。W.(1997)。 T型迷宫中大鼠的空间延迟交替:内侧前额叶皮层神经毒性损伤的影响T迷宫旋转。 Behav Brain Res 84(1-2):73-79。
  14. Saroja,SR,Aher,YD,Kalaba,P.,Aher,NY,Zehl,M.,Korz,V.,Subramaniyan,S.,Miklosi,AG,Zanon,L.,Neuhaus,W.,Hoger,H。 ,Langer,T.,Urban,E.,Leban,J。和Lubec,G。(2016)。 一种靶向多巴胺转运蛋白的新型杂环化合物改善了放射臂迷宫的表现并调节多巴胺受体D1- D3。 Behav Brain Res 312:127-137。
  15. Sase,A.,Aher,YD,Saroja,SR,Ganesan,MK,Sase,S.,Holy,M.,Hoger,H.,Bakulev,V.,Ecker,GF,Langer,T.,Sitte,HH, Leban,J。和Lubec,G。(2016)。 杂环化合物CE-103抑制多巴胺再摄取并调节多巴胺转运蛋白和含多巴胺D1-D3的受体复合物。 Neuropharmacology 102:186-196。
  16. Wenk,G。L.(2001)。 使用T迷宫评估空间记忆。 Curr Protoc Neurosci Chapter 8:第8单元5B。
登录/注册账号可免费阅读全文
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容,www.bio-protocol.org 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2018 The Authors; exclusive licensee Bio-protocol LLC.
引用:Hussein, A. M., Bezu, M. and Korz, V. (2018). Evaluating Working Memory on a T-maze in Male Rats. Bio-protocol 8(14): e2930. DOI: 10.21769/BioProtoc.2930.
提问与回复
提交问题/评论即表示您同意遵守我们的服务条款。如果您发现恶意或不符合我们的条款的言论,请联系我们:eb@bio-protocol.org。

如果您对本实验方案有任何疑问/意见, 强烈建议您发布在此处。我们将邀请本文作者以及部分用户回答您的问题/意见。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片的形式来说明遇到的问题。

如果您对本实验方案有任何疑问/意见, 强烈建议您发布在此处。我们将邀请本文作者以及部分用户回答您的问题/意见。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片的形式来说明遇到的问题。