参见作者原研究论文

本实验方案简略版
Jan 2019

本文章节


 

Visualization of Nitric Oxide, Measurement of Nitrosothiols Content, Activity of NOS and NR in Wheat Seedlings
小麦幼苗中一氧化氮可视化以及亚硝基硫醇含量和NOS、NR活性测定   

引用 收藏 提问与回复 分享您的反馈 Cited by

Abstract

Nitric oxide (NO), is a redox-active, endogenous signalling molecule involved in the regulation of numerous processes. It plays a crucial role in adaptation and tolerance to various abiotic and biotic stresses. In higher plants, NO is produced either by enzymatic or non-enzymatic reduction of nitrite and an oxidative pathway requiring a putative nitric oxide synthase (NOS)-like enzyme. There are several methods to measure NO production: mass spectrometry, tissue localization by DAF-FM dye. Electron paramagnetic resonance (EPR) also known as electron spin resonance (ESR) and spectrophotometric assays. The activity of NOS can be measured by L-citrulline based assay and spectroscopic method (NADPH utilization method). A major route for the transfer of NO bioactivity is S-nitrosylation, the addition of a NO moiety to a protein cysteine thiol forming an S-nitrosothiol (SNO). This experimental method describes visualization of NO using DAF-FM dye by fluorescence microscopy (Zeiss AXIOSKOP 2). The whole procedure is simplified, so it is easy to perform but has a high sensitivity for NO detection. In addition, spectrophotometry based protocols for assay of NOS, Nitrate Reductase (NR) and the content of S-nitrosothiols are also described. These spectrophotometric protocols are easy to perform, less expensive and sufficiently sensitive assays which provide adequate information on NO based regulation of physiological processes depending on the treatments of interest.

Keywords: Nitric oxide (NO) (一氧化氮), Nitric oxide synthase (NOS)-like enzyme (一氧化氮合酶(NOS)样蛋白), Nitrate Reductase (NR) (硝酸还原酶(NR)), Diaminofluorescein-FM (DAF-FM) (二氨基荧光素-FM(DAF-FM)), S-nitrosothiol (S-亚硝基硫醇)

Background

Nitric oxide (NO) is emerging as a key regulator of diverse plant cellular processes like regulating synthesis of the cell wall (Correa-Aragunde et al., 2008; Xiong et al., 2009; Ye et al., 2015), ROS metabolism in plants (Delledonne et al., 2001), gene expression and regulation (Bogdan et al., 2000), programmed cell death (de Pinto et al., 2002), maturation and senescence (Yaacov et al., 1998). NO exerts a crucial role in protecting plants against various abiotic stresses (Hung et al., 2002). NO could significantly enhance antioxidative capacity by increasing the activities of catalase (CAT), ascorbate peroxidase (APX) and accumulating proline during wheat seed germination under osmotic stress (Zhang et al., 2003). A major route for the transfer of NO bioactivity is S-nitrosylation, the addition of a NO moiety to a protein cysteine thiol forming an S-nitrosothiol (SNO). Total cellular levels of protein S-nitrosylation are controlled predominantly by S-nitrosoglutathione reductase 1 (GSNOR1) which turns over the natural NO donor, S-nitrosoglutathione (GSNO). In the absence of GSNOR1 function, GSNO accumulates, leading to dysregulation of total cellular S-nitrosylation (Yun et al., 2016)

Nitric oxide (NO) production in land plants classically involves two main routes: first, a reductive pathway involving both enzymatic and non-enzymatic reduction of nitrite into NO (Gupta et al., 2011); second, an oxidative pathway requiring a putative nitric oxide synthase (NOS)-like enzyme. Role of NR in NO production was suspected by low or no NR activity mutants which show no measurable NO. Later nia1/nia2 double mutants of Arabidopsis confirmed the role of NR in reduction of NO2- to NO in NADH dependent manner under both in vitro (Yamasaki et al., 1999) and in vivo (Vanin et al., 2004) condition. The possibility that NOS could catalyze NO synthesis in plants has also been a main controversial issue. Experimental evidence further increased suspicion about the existence of a plant NOS-like enzyme. It was reported that the L-citrulline based assay commonly used to measure a NOS activity in plant extracts is prone to artefacts (Tischner et al., 2007).

Several methods have been reported for nitric oxide assay in plants which includes gas chromatography and mass spectrometry (Neil et al., 2003; Conarth et al., 2004, Bethke et al., 2004), laser photo-acoustic spectroscopy (Lesham and Pinchasov, 2000), NO electrode (Yamasaki et al., 2001), electron paramagnetic resonance (EPR) (Sun et al., 2018) and a group of florescent dye indicators which are available in acetylated form for intracellular measurements like Diaminofluorescein-FM (DAF-FM) (Du et al., 2016). Fluorescent dye indicator and EPR both are highly specific for NO. EPR is limited by inability to detect low level NO production and insolubility of chelating agent. Use of fluorogenic probe DAF-FM is gaining more importance because of their simplicity, high sensitivity towards NO and are essentially independent of pH above pH 5.5. This probe is membrane-permeant and deacylated by intracellular esterases to 4-amino-5-methylamino-2 V, 7 V-difluorofluorescein. Presence of light leads to autoxidation of Diaminofluorescein-FM (DAF-FM) dye and simultaneous presence of NO and superoxide source (like xanthine + xanthine oxidase) decreases the fluorescence of Diaminofluorescein-FM (DAF-FM), resulting in underestimation of nitric oxide production (Balcerczyk et al., 2005). This limits the use of Diaminofluorescein-FM (DAF-FM) in stress-related study.

The activity of NOS can be measured by L-citrulline based assay (Tischner et al., 2007) and spectroscopic method (NADPH utilization method) ( Gonzalez et al., 2012). Citrulline-based assay measures the formation of L-citrulline from L-arginine using ion exchange chromatography. The assay does not exactly quantify citrulline; any arginine derivative that does not bind to the cation exchange resin will give a signal and leads to false measurement and also involve radiolabelling which may be tedious to handle (Tischner et al., 2007). Spectrophotometric measurement of NOS activity has been widely regarded as a less expensive and sufficiently sensitive assay for routine laboratorial experiments.

Nitrate reductase activity can be measured by an in vitro or an easy to perform in vivo method (Nair and Abrol, 1973). We have used these protocols to study the effect of elevated CO2 (EC) and nitrate supply on nitrogen metabolism in wheat seedlings (Adavi and Sathee, 2019). S-nitrosylation of NR by EC induced NO produced in plants supplied with high nitrate concentration decreases the enzyme activity (Cheng et al., 2015; Du et al., 2016).

Materials and Reagents

  1. 50 ml glass culture tubes without rim (Borosil, catalog number: 9820U08)
  2. Scalpel Blade No.10 (Himedia, catalog number: LA76808)
  3. Paint Brush (Faber-Castell, size-2)
  4. Glass slide (Himedia, catalog number: LA76808) and cover slip (Himedia, catalog number: GW064)
  5. Needle (Himedia)
  6. Kimwipes® 
  7. Moist filter paper
  8. Butter paper bags
  9. Wheat seed
  10. Double distilled water
  11. 2-(4-carboxy phenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide (cPTIO, Sigma-Aldrich, 200 µM, catalog number: C221)
  12. Diaminofluorescein-FM (DAF-FM, Sigma-Aldrich, catalog number: D1821)
  13. HEPES (Sigma-Aldrich, catalog number: RDD002) 
  14. Potassium nitrate (KNO3) (Fischer Scientific, catalog number:13655) 
  15. N-nitro arginine methyl ester (L-NAME, Sigma-Aldrich, catalog number: N5751)
  16. Phosphate buffer 200 mM pH 7.5 
  17. Sodium nitroprusside (SNP, Sigma-Aldrich, catalog number: BP453)
  18. Sodium tungstate (Na-Tungstate, Sigma-Aldrich, catalog number: 14304)
  19. NEDD (Sisco Research Laboratories Pvt. Ltd, catalog number: 61166)
  20. N-propanol
  21. Ammonium Sulfonate (Sisco Research Laboratories Pvt. Ltd, catalog number: 62419)
  22. HgCl2 (Sisco Research Laboratories Pvt. Ltd, catalog number: 25699)
  23. Sulfanilamide (Sisco Research Laboratories Pvt. Ltd, catalog number:19689)
  24. Ferric-EDTA (Sisco Research Laboratories Pvt. Ltd, catalog no 59389)
  25. Assay buffer (Phosphate buffer, 100 mM, pH 7.0) 
  26. L-Arginine (Sisco Research Laboratories Pvt. Ltd, catalog number: 66637)
  27. MgCl2 (Sisco Research Laboratories Pvt. Ltd, catalog number: 69396)
  28. CaCl2 (Sisco Research Laboratories Pvt. Ltd, catalog number: 70650)
  29. BH4 ((6R)-5,6,7,8-Tetrahydrobiopterin dihydrochloride, Sigma-Aldrich, 100 µM, catalog number: 14304) 
  30. FAD (Sisco Research Laboratories Pvt. Ltd, catalog number: 87939)
  31. FMN (Sisco Research Laboratories Pvt. Ltd, catalog number: 57443)
  32. DTT (Sisco Research Laboratories Pvt. Ltd, catalog number: 84834)
  33. PMSF (Sisco Research Laboratories Pvt. Ltd, catalog number: 87606)
  34. NADPH (Sisco Research Laboratories Pvt. Ltd, catalog number: 77268)
  35. Bradford reagent (Genetix Biotech Asia Pvt. Ltd, catalog number: E530-1L)
  36. 0.25% HgCl2 in 0.1 N HCl 
  37. 7% sulfanilamide in 1 N HCI
  38. 100 µM Sodium nitroprusside (prepared in double distilled water)
  39. 100 µM Sodium tungstate) (prepared in double distilled water)
  40. 0.1% NEDD (prepared in double distilled water)
  41. 0.5% Ammonium sulfonate (prepared in double distilled water)
  42. 0.2 mM NADPH (prepared in double distilled water)
  43. Nitrogen free Hoagland solution (see Recipes)
  44. NOS extraction buffer (see Recipes)
  45. S-nitrosothiol extraction buffer (see Recipes)
  46. HEPES-KOH with pH 7.5 (see Recipes)

Equipment

  1. Growth chamber (Conviron, Winnipeg, Canada, model: PGW 36,)
  2. Watch glass (Himedia, catalog number: LA025)
  3. Mortar and pestle
  4. Fluorescence microscope (Zeiss AXIOSKOP 2)
  5. UV-visible spectrophotometer (Analytik Jena, Germany, model: Specord Bio-200)
  6. Refrigerated centrifuge (Sigma 3K30)
  7. Aerator Pump
  8. Water bath

Software

  1. ImageJ (https://imagej.nih.gov/ij/download.html)
  2. MS Excel
  3. SPSS 10.0

Procedure

  1. Plant growth
    1. Pre-soak the wheat seeds in Petri plates lined with moist filter paper till they germinate for 5 days. 
    2. Transfer the uniforms seedlings to 50 ml culture tubes containing nitrogen-free Hoagland solution (Recipe 1). Replenish the Hoagland solution every 3 days (Figure 1). The whole experiment was laid out at National Phytotron Facility, Indian Agricultural Research Institute (IARI), New Delhi in growth chambers (Model PGW 36, Conviron, Winnipeg, Canada).
      Growth condition:
      Temperature: 25 °C/18 °C (day/night)
      Photoperiod: 14 h N/10 h D
      Photon flux density: 500 µmol m-2 s-1 (PAR)
      Relative humidity (RH): 90%
      CO2 concentration: (i) 400 ± 50 µl/l as ambient CO2 (AC)
                                      n(ii) 750 ± 50 µl/l as elevated CO2 (EC)

  2. Treatments
    1. After 10 days of transfer, replenish the culture tubes with different set of treatments as mentioned in Table 1. Maintain 3 replication for each treatment. 
    2. Cover the mouth of test tubes with aluminum foil to avoid effect of volatile chemicals on neighbouring plants (Figure 1). Sodium nitroprusside (SNP), a source of NO; cPTIO, an effective NO scavenger-NAME an inhibitor of nitric oxide synthase, and Na-Tungstate, an inhibitor of NR can be used to understand the impact of No on regulation of NR activity. Detailed description on impact of EC on NO localization and NR activity in combination with SNP and inhibitors are discussed in Adavi and Sathee (2019).

      Table 1. Treatment details



      Figure 1. Representative image of plants grown in 50 ml culture tubes. Each treatment consisted of three tubes with 2 plants per tube.

  3. Visualization of NO using fluorescent microscope
    1. After 4 h of treatment, harvest the plants. Cut the root tips into small pieces measuring approximately 2 mm using surgical blade. Then immerse the root sections in the Diaminofluorescein-FM dye (5 µM DAF-FM in 20 mM HEPES-KOH with pH 7.5) in a watch glass for 30 min. After 30 min, carefully take out the root sections and wash with HEPES-KOH buffer without dye 2-3 times till the excess dye is removed. 
    2. Transfer the root sections into glass slide carefully with help of paint brush and cover with cover glass. Drain out excess buffer with help of Kim Wipes.
    3. Visualize the slides under a fluorescence microscope (Zeiss AXIOSKOP 2) at 495 nm excitation and 515 nm emission wavelengths and acquire the images (Figure 2). 
    4. Analyze the image and calculate the relative fluorescence with “Image J,” a Java-based image processing program. 
    5. Set scale bar on the image using “Image J”.


      Figure 2. Representative image of nitric oxide visualized in wheat roots under fluorescent microscope

  4. Estimation of Nitrate Reductase (NR) activity
    1. Follow the same procedure for plant growth and treatments as mentioned (Procedures A and B) above. Harvest the plants after 4 h of treatment. 
    2. Estimate in vivo nitrate reductase activity by estimating nitrite formed by the enzyme present in cells and nitrite formed is then diazotized using sulphanilamide in acidic medium and NEDD using the method described by Klepper et al. (1971) and modified by Nair and Abrol (1973). Estimate the nitrite amount using Evans and Nason method (1953).
    3. Harvest the plants and store in labeled butter paper bags and keep on ice until weighing. Cut the samples (leaves and roots) into 2 mm pieces and mix thoroughly, weigh 0.3 g and add to ice cold incubation medium containing 3 ml each of phosphate buffer (0.2 M, pH 7.5) and potassium nitrate solution (0.4 M). To this, add 0.2 ml of n-propanol.
    4. Vacuum infiltrate the samples using a pump for 2 min (80-85KPa) and then incubate in a water bath at 30 °C for 30 min under dark conditions.
    5. After incubation, place the tubes in a water bath (70-80 °C) for 3-4 min to stop the enzyme activity and for the complete leaching of nitrite into the medium. 
    6. Estimate the amount of nitrite produced by taking adequate amount of aliquot (0.2 ml) in a test tube; to it add 1 ml of sulphanilamide (1% in 1 N HCI). After mixing, add 1 ml NEDD (0.02%) and again mix well. Pink color is formed immediately, and after 20 min make the total volume up to 3 ml with double distilled water. 
    7. Measure the absorbance using a UV-visible spectrophotometer (model Specord Bio-200) at 540 nm. 
    8. Prepare the calibration curve using standard potassium nitrite solution. 
    9. Express the enzyme activity as µmol nitrite formed g-1 DW h-1.

  5. Estimation of Nitric oxide synthase (NOS) activity
    1. Follow the same procedure for plant growth and treatments as mentioned (Procedures A and B) above. Harvest the plants after 4 h of treatment. 
    2. Homogenize 0.5 g of tissue (leaf and root) samples in 5 ml of cold extraction buffer in pre-chilled mortar and pestle. Centrifuge the homogenate at 10,000 x g for 15 min at 4 °C (Hageman and Hucklesby, 1971). Collect the supernatant to carry out enzyme assays. Determine the protein content of the supernatant by following Bradford’ method (1976).
    3. Determine the activity of NOS in the reaction mixture (Gonzalez et al., 2012) containing assay buffer (100 mM phosphate buffer pH 7.0), 1 mM L-Arginine, 2 mM MgCl2, 0.3 mM CaCl2, 4 μM BH4, 1 μM FAD, 1 μM FMN, 0.2 mM DTT, 0.2 mM NADPH with 100 μl of tissue extract. 
    4. Observe the change in absorbance due to NADPH utilization at 340 nm for 1 min. Reference was set using reaction mixtures containing distilled water instead of enzyme extract. Three replications of positive control with reaction mixture without L-Arginine was also maintained in each treatment. Use the extinction coefficient of NADPH (ε = 6.22 mM-1 cm-1) for calculating NOS activity.

  6. Estimation of S-nitrosothiols
    1. Formation of S-nitrosothiols is estimated from leaf and root tissues (Arc et al., 2013). All the steps need to be performed in dark condition. Follow the same procedure for plant growth and treatments as mentioned (Procedures A and B) above.
    2. Homogenize 0.5 g of tissue (leaf and root) samples in 5 ml of cold s-nitrosothiols extraction buffer (Recipe 3) in pre-chilled mortar and pestle. Centrifuge the extract at 13,800 x g for 25 min at 4 °C.
    3. Mix the supernatant with 50 µl ammonium sulfonate and incubate at room temperature for 2 min. Then add 0.3 ml each of sulfanilamide, HgCl2 and NEDD to the reaction mixture. Keep the reaction mixture under dark condition for 20 min at 30 °C.
    4. Measure the absorbance using a UV-visible spectrophotometer (model Specord Bio-200) at 540 nm. 

Data analysis

MS Excel is used for calculations and also to plot the graphs. The least significant difference (LSD at 0.05%) and mean separation using Duncan’s multiple range test was computed by SPSS 10.0. Plants exposed to EC conditions displayed higher accumulation of NO in NOS dependent manner and further details are described in Adavi and Sathee (2019).

Notes

  1. Care should be taken to avoid exposure of DAF-FM dye to light, as the dye is light sensitive and may lead to auto-oxidation and false fluorescence.
  2. Culture tube mouth should be properly covered with cotton and aluminium foil to avoid effect of volatile chemicals on neighbouring plants.
  3. Care should be taken to avoid any damage to root sections while washing or transferring them to slides.
  4. During measurement of NR, glasswares should be cleaned properly, rinsed with distilled water and air dried to avoid false color development.

Recipes

  1. Nitrogen free Hoagland Solution
    Macronutrient
    Molarity (M)
    Quantity (ml/L of solution)
    K2SO4
    0.5
    3.5
    MgSO4·7H2O
    1.0
    2
    CaCl2
    1.0
    2
    KH2PO4
    1
    1
    Micronutrient
    Quantity (g/L of solution)

    H3BO3
    2.86

    MnCl2·4H2O
    1.81

    ZnSO4·7H2O
    0.22

    CuSO4·5H2O
    0.08

    Na2MoO4·2H2O
    0.02

    Add micronutrient solution and 0.5% Ferric-EDTA solution (1 ml each) to one liter of solution of macronutrient and adjust the pH to 6.5 prior to use
  2. NOS extraction buffer
    Tris-HCl buffer, 50 mM pH 7.5
    10 mM MgCl2
    1 mM DTT
    1 mM PMSF
  3. S-nitrosothiol extraction buffer
    25 mM HEPES-NaOH
    1 mM EDTA, pH 7.8
  4. HEPES-KOH with pH 7.5
    20 mM HEPES was prepared in double distilled water and pH was adjusted to 7.5 with KOH

Acknowledgments

This protocol was adapted from Adavi and Sathee (2019) and our other studies (unpublished). This study was supported by ICAR-Indian Agricultural Research Institute (institute project-CRSCIARISIL20144047279). SAB and BKP acknowledge ICAR- junior research fellowship support received during the course of the study.

Competing interests

The authors declare that there is no conflict of interest.

References

  1. Adavi, S. B. and Sathee, L. (2019). Elevated CO2-induced production of nitric oxide differentially modulates nitrate assimilation and root growth of wheat seedlings in a nitrate dose-dependent manner. Protoplasma 256(1): 147-159. 
  2. Arc, E., Galland, M., Godin, B., Cueff, G. and Rajjou, L. (2013). Nitric oxide implication in the control of seed dormancy and germination. Front Plant Sci 4: 346.
  3. Balcerczyk, A., Soszynski, M. and Bartosz, G. (2005). On the specificity of 4-amino-5-methylamino-2',7'-difluorofluorescein as a probe for nitric oxide. Free Radic Biol Med 39(3): 327-335.
  4. Bethke, P. C., Badger, M. R. and Jones, R. L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16(2): 332-341.
  5. Bogdan, C., Rollinghoff, M. and Diefenbach, A. (2000). The role of nitric oxide in innate immunity. Immunol Rev 173: 17-26.
  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2): 248–254.
  7. Cheng, T., Chen, J., Ef, A. A., Wang, P., Wang, G., Hu, X. and Shi, J. (2015). Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Planta 242(6): 1361-1390.
  8. Conrath, U., Amoroso, G., Köhle, H. and Sültemeyer, D. F. (2004). Non‐invasive online detection of nitric oxide from plants and some other organisms by mass spectrometry. The Plant J 38(6): 1015-1022.
  9. Correa-Aragunde, N., Lombardo, C. and Lamattina, L. (2008). Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. New Phytol 179(2): 386-396.
  10. de Pinto, M. C., Tommasi, F. and De Gara, L. (2002). Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiol 130(2): 698-708.
  11. Delledonne, M., Zeier, J., Marocco, A. and Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98(23): 13454-13459.
  12. Du, S., Zhang, R., Zhang, P., Liu, H., Yan, M., Chen, N., Xie, H. and Ke, S. (2016). Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies. J Exp Bot 67(3): 893-904.
  13. Evans, H. J. and Nason, A. (1953). Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol 28(2): 233-254.
  14. Gonzalez, A., Cabrera Mde , L., Henriquez, M. J., Contreras, R. A., Morales, B. and Moenne, A. (2012) Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiol 158(3):1451-1462.
  15. Gupta, K. J., Fernie, A. R., Kaiser, W. M. and van Dongen, J. T. (2011). On the origins of nitric oxide. Trends Plant Sci 16(3): 160-168.
  16. Hageman, R. H.and Hucklesby, D. P. (1971). Nitrate reductase from higher plants. In Methods in enzymology. Academic Press 23:491-503.
  17. Hung, K. T., Chang, C. J. and Kao, C. H. (2002). Paraquat toxicity is reduced by nitric oxide in rice leaves. J Plant Physiol 159(2): 159-166.
  18. Klepper, L., Flesher, D. and Hageman, R.H. (1971). Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol 48(5): 580-590.
  19. Leshem, Y. Y. and Pinchasov, Y. (2000). Non‐invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.). J Exp Bot 51(349): 1471-1473.
  20. Nair, T. V. R. and Abrol, Y. P. (1973). Nitrate reductase activity in developing wheat ears. Cell Mol Life Sci 29(12): 1480-1481.
  21. Neill, S. J., Desikan, R. and Hancock, J. T. (2003). Nitric oxide signalling in plants. New Phytol, 159(1): 11-35.
  22. Sun, A. (2018). The EPR method for detecting nitric oxide in plant senescence. In Plant Senescence. Humana Press pp: 119-124.
  23. Tischner, R., Galli, M., Heimer, Y. M., Bielefeld, S., Okamoto, M., Mack, A. and Crawford, N. M. (2007). Interference with the citrulline-based nitric oxide synthase assay by argininosuccinate lyase activity in Arabidopsis extracts. FEBS J 274(16): 4238-4245.
  24. Vanin, A. F., Svistunenko, D. A., Mikoyan, V. D., Serezhenkov, V. A., Fryer, M. J., Baker, N. R. and Cooper, C. E. (2004). Endogenous superoxide production and the nitrite/nitrate ratio control the concentration of bioavailable free nitric oxide in leaves. J Biol Chem 279(23): 24100-24107.
  25. Xiong, J., Lu, H., Lu, K., Duan, Y., An, L. and Zhu, C. (2009). Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230(4): 599-610.
  26. Yaacov, Y. L., Wills, R. B. and Ku, V. V. V. (1998). Evidence for the function of the free radical gas nitric oxide (NO-) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Bioch.36(11): 825-833.
  27. Yamasaki, H., Sakihama, Y. and Takahashi, S. (1999). An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4(4): 128-129.
  28. Yamasaki, H., Shimoji, H., Ohshiro, Y. and Sakihama, Y. (2001). Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric oxide, 5(3): 261-270.
  29. Ye, Y. Q., Jin, C. W., Fan, S. K., Mao, Q. Q., Sun, C. L., Yu, Y. and Lin, X. Y. (2015). Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Sci Rep 5: 10746.
  30. Yun, B. W., Skelly, M. J., Yin, M., Yu, M., Mun, B. G., Lee, S. U., Hussain, A., Spoel, S. H. and Loake, G. J. (2016). Nitric oxide and S‐nitrosoglutathione function additively during plant immunity. New Phytol 211(2): 516-526. 
  31. Zhang, H., Shen, W. B. and Xu, L. L. (2003). Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress. Acta Bot Sin 45(8): 901-905.

简介

一氧化氮(NO)是一种氧化还原活性的内源性信号分子,参与许多过程的调节。它在适应和耐受各种非生物和生物胁迫中起着至关重要的作用。在高等植物中,NO是通过酶促还原或非酶促还原亚硝酸盐和需要假定的一氧化氮合酶(NOS)样酶的氧化途径产生的。有几种测量NO产生的方法:质谱法,DAF-FM染料对组织的定位。电子顺磁共振(EPR)也称为电子自旋共振(ESR)和分光光度法。 NOS的活性可以通过基于L-瓜氨酸的测定和光谱法(NADPH利用法)来测定。 NO生物活性转移的主要途径是S-亚硝基化,将NO部分添加到蛋白半胱氨酸硫醇上形成S-亚硝基硫醇(SNO)。该实验方法描述了使用DAF-FM染料通过荧光显微镜(Zeiss AXIOSKOP 2)可视化NO的方法。简化了整个过程,因此易于执行,但对NO检测灵敏度高。此外,还描述了用于测定NOS,硝酸还原酶(NR)和S-亚硝基硫醇含量的基于分光光度法的方案。这些分光光度法操作简便,成本较低且灵敏度足够高,可根据感兴趣的治疗方法提供有关基于NO调节生理过程的足够信息。
【背景】 一氧化氮(NO)逐渐成为多种植物细胞过程的关键调节剂,例如调节细胞壁的合成(Correa-Aragunde et al。,2008; Xiong et al。,2009; Ye et al。,2015),植物中的ROS代谢(Delledonne et al。,2001),基因表达和调控(Bogdan et al。 (,2000),程序性细胞死亡(de Pinto等,2002),成熟和衰老(Yaacov等,1998)。 NO在保护植物免受各种非生物胁迫方面起着至关重要的作用(Hung et al。,2002)。在渗透胁迫下,小麦种子萌发期间,NO可以通过增加过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX)的活性和脯氨酸的积累来显着增强抗氧化能力(Zhang et al。,2003)。 NO生物活性转移的主要途径是S-亚硝基化,将NO部分添加到蛋白半胱氨酸硫醇上形成S-亚硝基硫醇(SNO)。 S-亚硝基化蛋白的总细胞水平主要受S-亚硝基谷胱甘肽还原酶1(GSNOR1)的控制,该酶翻转天然NO供体S-亚硝基谷胱甘肽(GSNO)。在缺少GSNOR1功能的情况下,GSNO会积聚,从而导致总细胞S-亚硝基化的失调(Yun et al。,2016)。
陆地植物一氧化氮的生产通常涉及两条主要途径:第一,还原途径涉及酶和非酶将亚硝酸盐还原为NO(Gupta等,2011)。第二,需要假定的一氧化氮合酶(NOS)样酶的氧化途径。低或无NR活性突变体怀疑NR在NO产生中的作用,该突变体没有可测量的NO。拟南芥的后来的 nia1 / nia2 双突变体证实了NR在将NO 2 -还原为NO中的作用。在体外(Yamasaki等人,,1999)和体内中(Vanin等人),NADH依赖性方式>,2004年)。 NOS可以催化植物中NO合成的可能性也是一个有争议的主要问题。实验证据进一步增加了人们对植物类NOS样酶的怀疑。据报道,通常用于测量植物提取物中一氧化氮合酶活性的基于L-瓜氨酸的测定法容易产生假象(Tischner et al。,2007)。

已经报道了几种用于植物中一氧化氮测定的方法,包括气相色谱法和质谱法(Neil等,2003; Conarth等,2004,Bethke等)。 > et al。,2004年),激光光声光谱法(Lesham and Pinchasov,2000年),NO电极(Yamasaki et al。,2001年),电子顺磁共振(EPR)( Sun等人,2018年)和一组荧光染料指示剂,它们以乙酰化形式用于细胞内测量,如二氨基荧光素-FM(DAF-FM)(Du等人。 >,2016年)。荧光染料指示剂和EPR均对NO具有高度特异性。 EPR受无法检测低水平NO产生和螯合剂不溶性的限制。荧光探针DAF-FM的使用变得越来越重要,因为它们的简单性,对NO的高敏感性以及基本上与pH 5.5以上的pH无关。该探针是透膜的,并通过细胞内酯酶脱酰基为4-氨基-5-甲基氨基-2V,7V-二氟荧光素。光的存在导致二氨基荧光素-FM(DAF-FM)染料的自氧化,同时存在一氧化氮和超氧化物源(如黄嘌呤+黄嘌呤氧化酶)会降低二氨基荧光素-FM(DAF-FM)的荧光,从而导致一氧化氮的低估生产(Balcerczyk等人,2005年)。这限制了二氨基荧光素-FM(DAF-FM)在压力相关研究中的使用。NOS的活性可以通过基于L-瓜氨酸的测定法(Tischner等,2007)和光谱法(NADPH利用法)进行测定(Gonzalez等,2012)。 )。基于瓜氨酸的测定法使用离子交换色谱法测量了从L-精氨酸形成L-瓜氨酸的过程。该测定法不能准确地定量瓜氨酸。任何不与阳离子交换树脂结合的精氨酸衍生物都会发出信号并导致错误的测量结果,并且还涉及放射性标记,可能难以处理(Tischner et al。,2007)。对于常规实验室实验,NOS活性的分光光度测量已被广泛认为是一种较便宜且足够灵敏的测定方法。

硝酸还原酶的活性可以通过体外或易于实施的体内方法进行测量(Nair and Abrol,1973)。我们已使用这些协议研究了CO 2 (EC)和硝酸盐供应升高对小麦幼苗氮代谢的影响(Adavi和Sathee,2019)。硝酸盐浓度高的植物中EC诱导的NO引起的NR的S-亚硝基化会降低酶的活性(Cheng et al。,2015; Du et al。,,2016) 。

关键字:一氧化氮, 一氧化氮合酶(NOS)样蛋白, 硝酸还原酶(NR), 二氨基荧光素-FM(DAF-FM), S-亚硝基硫醇

材料和试剂

  1. 50 ml无缘玻璃培养管(Borosil,目录号:9820U08)
  2. 手术刀10号刀片(Himedia,货号:LA76808)
  3. 油漆刷(Faber-Castell,尺寸2)
  4. 载玻片(Himedia,目录号:LA76808)和盖玻片(Himedia,目录号:GW064)
  5. 针(Himedia)
  6. Kimwipes ® 
  7. 湿滤纸
  8. 牛油纸袋
  9. 小麦种子
  10. 双蒸馏水
  11. 2-(4-羧基苯基)-4,4,5,5-四甲基咪唑啉-1-氧基-3-氧化物(cPTIO,Sigma-Aldrich,200 µM,目录号:C221)
  12. 二氨基荧光素-FM(DAF-FM,西格玛奥德里奇,目录号:D1821)
  13. HEPES(Sigma-Aldrich,目录号:RDD002)
  14. 硝酸钾(KNO 3 )(Fischer Scientific,目录号:13655)
  15. N-硝基精氨酸甲酯(L-NAME,Sigma-Aldrich,目录号:N5751)
  16. 磷酸盐缓冲液200 mM pH 7.5
  17. 硝普钠(SNP,Sigma-Aldrich,目录号:BP453)
  18. 钨酸钠(钠钨酸盐,西格玛奥德里奇,目录号:14304)
  19. NEDD(Sisco Research Laboratories Pvt。Ltd,目录号:61166)
  20. 正丙醇
  21. 磺酸铵(Sisco Research Laboratories Pvt。Ltd,目录号:62419)
  22. HgCl 2 (Sisco Research Laboratories Pvt。Ltd,目录号:25699)
  23. 磺胺(Sisco Research Laboratories Pvt.Ltd,目录号:19689)
  24. 铁-EDTA(Sisco研究实验室私人有限公司,目录号59389)
  25. 分析缓冲液(磷酸盐缓冲液,100 mM,pH 7.0)
  26. L-精氨酸(Sisco Research Laboratories Pvt.Ltd,目录号:66637)
  27. MgCl 2 (Sisco Research Laboratories Pvt。Ltd,目录号:69396)
  28. CaCl 2 (Sisco Research Laboratories Pvt.Ltd,目录号:70650)
  29. BH 4 ((6R)-5,6,7,8-四氢生物蝶呤二盐酸盐,Sigma-Aldrich,100 µM,目录号:14304)
  30. FAD(Sisco Research Laboratories Pvt.Ltd,目录号:87939)
  31. FMN(Sisco Research Laboratories Pvt。Ltd,目录号:57443)
  32. DTT(Sisco Research Laboratories Pvt.Ltd,目录号:84834)
  33. PMSF(Sisco Research Laboratories Pvt.Ltd,目录号:87606)
  34. NADPH(Sisco Research Laboratories Pvt.Ltd,目录号:77268)
  35. 布拉德福德试剂(Genetix Biotech Asia Pvt。Ltd,目录号:E530-1L)
  36. 在0.1 N HCl中的0.25%HgCl 2
  37. 1 N HCl中的7%磺胺盐
  38. 100 µM硝普钠(在双蒸馏水中制备)
  39. 100 µM钨酸钠)(在双蒸馏水中制备)
  40. 0.1%NEDD(在双蒸馏水中制备)
  41. 0.5%磺酸铵(在双蒸馏水中制备)
  42. 0.2 mM NADPH(在双蒸馏水中制备)
  43. 无氮Hoagland解决方案(请参阅食谱)
  44. NOS提取缓冲液(请参见配方)
  45. S-亚硝基硫醇提取缓冲液(请参见配方)
  46. pH 7.5的HEPES-KOH(请参见食谱)

设备

  1. 生长室(加拿大温尼伯,康维尔,型号:PGW 36,)
  2. 表玻璃(Himedia,货号:LA025)
  3. 研钵和研杵
  4. 荧光显微镜(Zeiss AXIOSKOP 2)
  5. 紫外线可见分光光度计(Analytik Jena,德国,型号:Specord Bio-200)
  6. 冷藏离心机(Sigma 3K30)
  7. 曝气泵
  8. 水浴

软件

  1. ImageJ( https://imagej.nih.gov/ij/download.html )
  2. 微软Excel
  3. SPSS 10.0

程序

  1. 植物生长
    1. 将小麦种子预先浸泡在衬有湿滤纸的陪替氏培养皿中,直至发芽5天。
    2. 将制服的幼苗转移到50 ml的不含氮的Hoagland溶液的培养管中(配方1)。每3天补充一次Hoagland解决方案(图1)。整个实验在新德里的印度农业研究所(IARI)的国家植物保护区设施中的生长室中进行(型号PGW 36,加拿大温尼伯的Conviron)。
      生长状况:
      温度:25°C / 18°C(白天/晚上)
      光照时间:14小时N / 10小时D
      光子通量密度:500 µmol m -2 s -1 (PAR)
      相对湿度(RH):90%
      CO 2 浓度:(i)作为环境CO 2 (AC)的400±50 µl / l
                                     (ii)750±50 µl / l,因为CO 2 (EC)升高

  2. 治疗方法
    1. 转移10天后,按照表1中的说明为培养管补充不同的处理方法。每次处理应保持3次重复。
    2. 用铝箔纸盖住试管的口,以免挥发性化学物质对附近的植物造成影响(图1)。硝普钠(SNP),NO的来源; cPTIO(一种有效的NO清除剂-NO,一氧化氮合酶的抑制剂)和Na-钨酸盐(一种NR的抑制剂)可用于了解No对调节NR活性的影响。 Adavi和Sathee(2019)中讨论了EC对SNP和抑制剂与NO定位和NR活性的影响的详细说明。

      表1.治疗细节



      图1.在50 ml培养管中生长的植物的代表性图像。每种处理均由三个试管组成,每个试管2个植物。

  3. 使用荧光显微镜可视化NO
    1. 处理4小时后,收获植物。使用手术刀片将根尖切成约2毫米的小块。然后将根切片浸入表面玻璃中的Diaminofluorescein-FM染料(在20 mM HEPES-KOH中,pH 7.5的5 µM DAF-FM)中浸泡30分钟。 30分钟后,小心地取出根部,并用不含染料的HEPES-KOH缓冲液洗涤2-3次,直到去除多余的染料。
    2. 借助油漆刷将根部小心地转移到载玻片中,并盖上玻璃盖。在Kim Wipes的帮助下,排干多余的缓冲液。
    3. 在荧光显微镜(Zeiss AXIOSKOP 2)下以495 nm激发波长和515 nm发射波长可视化载玻片,并获取图像(图2)。
    4. 使用基于Java的图像处理程序“ Image J”分析图像并计算相对荧光。
    5. 使用“图像J”在图像上设置比例尺。


      图2.荧光显微镜下小麦根中一氧化氮的代表性图像

  4. 硝酸还原酶(NR)活性的估算
    1. 遵循上述与植物生长和处理相同的步骤(过程A和B)。处理4小时后收获植物。
    2. 通过估算细胞中存在的酶形成的亚硝酸盐来估算体内硝酸盐还原酶的活性,然后使用磺胺在酸性介质中重氮化亚硝酸盐,然后使用Klepper等人所述的方法将NEDD重氮化。 em>(1971),并由Nair和Abrol(1973)修改。使用Evans和Nason方法(1953)估算亚硝酸盐的量。
    3. 收割植物并保存在贴有标签的黄油纸袋中,并放在冰上直至称重。将样品(叶和根)切成2毫米的小块,充分混合,重0.3克,加到冰冷的培养培养基中,该培养基分别含3毫升磷酸盐缓冲液(0.2 M,pH 7.5)和硝酸钾溶液(0.4 M)。为此,加入0.2毫升正丙醇。
    4. 使用泵将样品真空渗透2分钟(80-85KPa),然后在黑暗条件下于30°C的水浴中孵育30分钟。
    5. 孵育后,将试管置于水浴(70-80°C)中3-4分钟,以终止酶的活性并将亚硝酸盐完全浸出到培养基中。
    6. 通过在试管中摄取适量的等分试样(0.2毫升)来估算产生的亚硝酸盐的量;向其中加入1 ml磺胺(1%HCl中的1%)。混合后,加入1 ml NEDD(0.02%),然后再次充分混合。立即形成粉红色,并在20分钟后用两次蒸馏水使总体积增加到3 ml。
    7. 使用紫外可见分光光度计(Specord Bio-200型)在540 nm下测量吸光度。
    8. 使用标准亚硝酸钾溶液准备校准曲线。
    9. 以微摩尔亚硝酸盐g -1 DW h -1 表示酶活性。

  5. 一氧化氮合酶(NOS)活性的估计
    1. 遵循上述与植物生长和处理相同的步骤(过程A和B)。处理4小时后收获植物。
    2. 在预冷研钵和研杵的5 ml冷提取缓冲液中均质0.5 g组织(叶和根)样品。将匀浆液在4°C下以10,000 x g 离心15分钟(Hageman and Hucklesby,1971)。收集上清液以进行酶测定。按照Bradford方法(1976)确定上清液中的蛋白质含量。
    3. 确定反应混合物中的NOS活性(Gonzalez等,2012),其中含有测定缓冲液(100 mM磷酸盐缓冲液pH 7.0),1 mM L-精氨酸,2 mM MgCl 2 、0.3 mM CaCl 2 ,4μMBH 4 ,1μMFAD,1μMFMN,0.2 mM DTT,0.2 mM NADPH和100μl组织提取物。  
    4. 观察由于在340 nm处使用NADPH而引起的吸光度变化1分钟。使用含有蒸馏水而不是酶提取物的反应混合物作为参考。在每种处理中,还保持了阳性对照与不含L-精氨酸的反应混合物的三份重复。使用NADPH的消光系数(ε= 6.22 mM -1 cm -1 )计算NOS活性。

  6. S-亚硝基硫醇的估计
    1. S-亚硝基硫醇的形成是根据叶和根组织估计的(Arc et al。,2013)。所有步骤都需要在黑暗条件下执行。遵循上述与植物生长和处理相同的步骤(过程A和B)。
    2. 在预冷研钵和研杵中的5 ml冷S-亚硝基硫醇提取缓冲液(配方3)中匀化0.5 g组织(叶和根)样品。将提取物在4°C下以13,800 x g 离心25分钟。
    3. 将上清液与50 µl磺酸铵混合,并在室温下孵育2分钟。然后向反应混合物中分别加入0.3 ml磺胺,HgCl 2 和NEDD。将反应混合物在黑暗条件下于30°C保持20分钟。
    4. 使用紫外可见分光光度计(Specord Bio-200型)在540 nm下测量吸光度。

数据分析

MS Excel用于计算以及绘制图形。最小显着差异(LSD为0.05%)和使用Duncan多范围测试的平均分离度由SPSS 10.0计算。暴露于EC条件下的植物以NOS依赖的方式表现出更高的NO积累,进一步的细节在Adavi和Sathee(2019)中进行了描述。

笔记

  1. 应注意避免DAF-FM染料暴露在光线下,因为该染料对光敏感,并可能导致自氧化和假荧光。
  2. 培养管口应适当地用棉和铝箔覆盖,以避免挥发性化学物质对附近植物的影响。
  3. 清洗或转移到载玻片上时,应小心避免损坏根部。
  4. 在测量NR时,应正确清洁玻璃器皿,用蒸馏水冲洗并风干,以免出现假色。

菜谱

  1. 无氮Hoagland解决方案
    class =“ ke-zeroborder” bordercolor =“#000000” style =“ width:600px;” border =“ 0” cellspacing =“ 0” cellpadding =“ 2”> <身体>宏营养素
    摩尔(M)
    数量(溶液的毫升/升)
    K 2 SO 4
    0.5
    3.5
    MgSO 4 ·7H 2 O
    1.0
    2
    CaCl 2
    1.0
    2
    KH 2 PO 4
    1
    1
    微量营养素
    数量(溶液的g / L)

    H 3 BO 3
    2.86

    MnCl 2 ·4H 2 O
    1.81

    ZnSO 4 ·7H 2 O
    0.22

    CuSO 4 ·5H 2 O
    0.08

    Na 2 MoO 4 ·2H 2 O
    0.02

    在微量营养素溶液中加入微量营养素溶液和0.5%的铁-EDTA溶液(各1毫升),并在使用前将pH值调节至6.5。
  2. NOS提取缓冲液
    Tris-HCl缓冲液,50 mM pH 7.5
    10毫米MgCl 2
    1毫米DTT
    1毫米PMSF
  3. S-亚硝基硫醇提取缓冲液
    25 mM HEPES-NaOH
    1 mM EDTA,pH 7.8
  4. pH 7.5的HEPES-KOH
    在双蒸馏水中制备20 mM HEPES,并用KOH将pH调节至7.5

致谢

该方案改编自Adavi和Sathee(2019)和我们的其他研究(未发表)。这项研究得到了ICAR印度农业研究所的支持(研究所项目-CRSCIARISIL20144047279)。 SAB和BKP感谢在研究过程中获得ICAR初级研究金的支持。

利益争夺

作者宣称没有利益冲突。

参考文献

  1. Adavi,S.B.和Sathee,L.(2019)。 升高的CO 2 -诱导的一氧化氮的产生以不同的硝酸盐剂量依赖性方式调节小麦幼苗的硝酸盐吸收和根系生长。 Protoplasma 256(1):147-159。&nbsp;
  2. Arc,E.,Galland,M.,Godin,B.,Cueff,G.和Rajjou,L.(2013)。 一氧化氮对种子休眠和萌发的控制。 前部植物科学 4:346。
  3. Balcerczyk,A.,Soszynski,M.和Bartosz,G.(2005)。 关于4-氨基-5-甲基氨基-2',7'-二氟荧光素的特异性一氧化氮的探针。 Free Radic Biol Med 39(3):327-335。
  4. Bethke,P. C.,Badger,M.R.和Jones,R.L.(2004)。 植物组织的质外体合成一氧化氮。 植物细胞 16(2):332-341。
  5. Bogdan,C.,Rollinghoff,M.和Diefenbach,A.(2000)。 一氧化氮在先天免疫中的作用。 Immunol Rev 173:17-26。
  6. 布拉德福德,M.M。(1976)。 一种利用蛋白质染料结合原理定量分析微克蛋白质的快速灵敏方法 Anal Biochem 72(1-2):248–254。
  7. Cheng T.,Chen,J.,Ef,A.A.,Wang,P.,Wang,G.,Hu,X. and Shi,J.(2015)。 定量蛋白质组学分析显示,S-亚硝基谷胱甘肽还原酶(GSNOR)和一氧化氮信号增强了杨树抗寒能力。强调。 Planta 242(6):1361-1390。
  8. U. Conrath,G。Amoroso,H。Köhle和D. F.Sültemeyer(2004)。 对植物和其他一些植物中的一氧化氮进行无创在线检测质谱分析生物体。 植物J 38(6):1015-1022。
  9. 北卡罗来纳州的科雷亚-阿拉贡德(Correa-Aragunde),哥伦比亚特区伦巴多(Lombardo)和路易斯安那州拉马蒂纳(Lamattina)(2008)。 一氧化氮:调节纤维素合成的活性氮分子在番茄根中。 新植物 179(2):386-396。
  10. de Pinto,M. C.,Tommasi,F.和De Gara,L.(2002)。 抗氧化系统的变化是信号传导途径的一部分,该信号通路负责由一氧化氮激活的程序性细胞死亡和亮黄色2细胞中的活性氧 植物生理学 130(2):698-708。
  11. Delledonne,M.,Zeier,J.,Marocco,A.和Lamb,C.(2001)。 植物过敏反应中一氧化氮与活性氧中间体之间的信号相互作用。 Proc Natl Acad Sci U S A 98(23):13454-13459。
  12. 杜珊,张荣,张鹏,刘海,严明,陈娜,谢海,柯南(2016)。 CO 2 -引起的CO 2升高NO合成酶产生的一氧化氮(NO)差异地影响在不同硝酸盐供应下的拟南芥植物中的硝酸还原酶活性。 J Exp Bot 67(3):893-904。
  13. Evans,H.J。和Nason,A。(1953)。 来自高等植物提取物中的吡啶核苷酸硝酸盐还原酶。 植物生理学 28(2):233-254。
  14. Gonzalez,A.,Cabrera Mde,L.,Henriquez,MJ,Contreras,RA,Morales,B.和Moenne,A.(2012)钙,过氧化氢和一氧化氮之间的对话以及暴露于过量铜的Ulva compressa中涉及钙调蛋白和钙依赖性蛋白激酶的基因表达的激活。 植物生理学 158(3):1451-1462。
  15. Gupta,K.J.,Fernie,A.R.,Kaiser,W.M.和van Dongen,J.T.(2011)。 关于一氧化氮的起源。 趋势植物科学 16(3):160-168。
  16. Hageman,R.H. and Hucklesby,D.P.(1971)。 来自高等植物的硝酸还原酶。在酶学方法中。 Academic Press 23:491-503。
  17. Hung K.T.,Chang C.J.和Kao C.H.(2002)。 稻草中的一氧化氮可降低百草枯的毒性。 J植物生理学 159(2):159-166。
  18. Klepper,L.,Flesher,D.和Hageman,R.H.(1971)。 还原型烟酰胺腺嘌呤二核苷酸的生成,用于绿叶中的硝酸盐还原。 植物生理学 48(5):580-590。
  19. Leshem,Y. Y.和Pinchasov,Y.(2000)。 无创光声光谱法测定草莓成熟期间内源性一氧化氮和乙烯含量的化学计量比安娜莎(Duch。)和鳄梨Persea americana(密西根州)。 J Exp Bot 51(349):1471-1473。
  20. Nair,T. V. R.和Abrol,Y. P.(1973)。 发育中的小麦穗中的硝酸还原酶活性。 细胞摩尔生命科学 29(12):1480-1481。
  21. Neill,S.J.,Desikan,R。和Hancock,J.T。(2003)。 植物中的一氧化氮信号。 新植物,159(1):11-35。
  22. Sun,A.(2018年)。 用于检测植物衰老中一氧化氮的EPR方法。在植物衰老中。 Humana Press pp:119-124。
  23. Tischner,R.,Galli,M.,Heimer,Y.M.,Bielefeld,S.,Okamoto,M.,Mack,A.和Crawford,N.M.(2007)。 通过拟南芥中的精氨琥珀酸裂合酶活性干扰基于瓜氨酸的一氧化氮合酶测定提取物。 FEBS J 274(16):4238-4245。
  24. Vanin,A. F.,Svistunenko,D. A.,Mikoyan,V. D.,Serezhenkov,V.A.,Fryer,M.J.,Baker,N.R. and Cooper,C.(2004)。 内源性超氧化物的产生和亚硝酸盐/硝酸盐的比率控制着叶片中可生物利用的游离一氧化氮的浓度。 J Biol Chem 279(23):24100-24107。
  25. 熊健,陆浩,陆克,段勇,安琳和朱成(2009)。 镉通过减少内源性一氧化氮来减少冠根数,这对于稻米中的冠根原基的形成是必不可少的幼苗。 Planta 230(4):599-610。
  26. Yaacov,Y.L.,Wills,R.B. and Ku,V.V.V.(1998)。 自由基一氧化氮(NO-)作为内源性成熟功能的证据植物的衰老和衰老调节因子 Plant Physiol Bioch .36(11):825-833。
  27. Yamasaki,H.,Sakihama,Y.和Takahashi,S.(1999)。 植物中产生一氧化氮的另一种途径:旧酶的新功能。 Trends Plant Sci 4(4):128-129。
  28. Yamasaki,H.,Shimoji,H.,Ohshiro,Y.和Sakihama,Y.(2001)。 一氧化氮对植物线粒体氧化磷酸化的抑制作用。 一氧化氮,5(3):261-270。
  29. Ye,Y.Q.,Jin,C.W.,Fan,S.K.,Mao,Q.,Sun,C.L.,Yu,Y. and Lin,X.Y.(2015)。 NO产量的升高通过减少果胶甲基化而提高了铁缺乏根质质体中的铁固定化细胞壁。 Sci Rep 5:10746。
  30. Yun,B.W.,Skelly,M.J.,Yin,M.,Yu,M.Mun,B.G.,Lee,S.U.,Hussain,A。,Spoel,S.H。和Loake,G.J。(2016)。 一氧化氮和S-亚硝基谷胱甘肽在植物免疫过程中具有相加作用。 新植物 211(2):516-526。
  31. Zhang H.,Shen W. B. and Xu,L.L.(2003)。 一氧化氮对渗透胁迫下小麦种子萌发及其活性氧代谢的影响。 / a> Acta Bot Sin 45(8):901-905。
登录/注册账号可免费阅读全文
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容,www.bio-protocol.org 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2019 The Authors; exclusive licensee Bio-protocol LLC.
引用:Adavi, S. B., Sathee, L., Padhan, B. K., Singh, O., Meena, H. S., Durgesh, K. and Jha, S. K. (2019). Visualization of Nitric Oxide, Measurement of Nitrosothiols Content, Activity of NOS and NR in Wheat Seedlings. Bio-protocol 9(20): e3402. DOI: 10.21769/BioProtoc.3402.
提问与回复
提交问题/评论即表示您同意遵守我们的服务条款。如果您发现恶意或不符合我们的条款的言论,请联系我们:eb@bio-protocol.org。

如果您对本实验方案有任何疑问/意见, 强烈建议您发布在此处。我们将邀请本文作者以及部分用户回答您的问题/意见。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片的形式来说明遇到的问题。

如果您对本实验方案有任何疑问/意见, 强烈建议您发布在此处。我们将邀请本文作者以及部分用户回答您的问题/意见。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片的形式来说明遇到的问题。