Aug 2020



Objective Quantitation of Focal Sweating Areas Using a Mouse Sweat-assay Model

引用 收藏 提问与回复 分享您的反馈 Cited by


In vivo sweat quantitation assays are required for the development of drugs for the management of focal hyperhidrosis before clinical trials; however, in vivo assays, particularly mouse models, are rare. Even in sweat assays using mice, sweating is quantitated by manually counting the number of sweating spots, which can contribute to various errors owing to arbitrary judgment. In this study, we developed a mouse sweat-assay model and a method for quantitating the amount of sweating to remove possible errors. The use of the iodine–starch test in the castor oil-covered hind footpad skin of anesthetized mice resulted in the sweating area being stained blue-black. After the anesthesia and treatment with drugs (pilocarpine, glycopyrrolate, botulinum neurotoxin, myricetin, and myricetin-loaded lipid nanoparticles), the remaining area of the footpad skin was eliminated from the acquired footpad images using ImageJ. Blue pixels extracted from the footpad image are automatically adjusted using the Phansalkar method, where the percentage of the blue area was determined based on the whole hind footpad skin area, finally indicating the percentage of the sweating area. Using this mouse model and analysis for sweat assays, a clear difference between the control group and antiperspirant-administered group was observed with respect to the sweating area % with no error. In conclusion, this assay can be used as a preclinical tool to screen potential antiperspirant drugs.

Graphic abstract:

Overview of the mouse-model sweat assay and objective quantitation of the focal sweating area

Keywords: Sweat assay (汗液分析), Mouse model (小鼠模型), Sweat quantitation (汗液定量), Mouse hind footpad perspiration (鼠后足底汗), Non-arbitrarily judged quantitation (非任意判断的定量)


Numerous populations – nearly 3% of people aged 25-64 years – experience focal hyperhidrosis, an idiopathic abnormality characterized by hyper-sweating concentrated in certain regions of the body, e.g., palms, soles, face, and armpits (Haider et al., 2005). It interferes with daily activities; therefore, this condition poses substantial emotional, psychological, social, and professional burden (Strutton et al., 2004) and even leads to social anxiety disorders (Solish et al., 2007). During the development of drugs or medications for the treatment of focal hyperhidrosis, rational assays for evaluating sweating are necessary to evaluate excessive perspiration symptoms. Several tests used in clinical practice and research studies are not sensitive enough to detect subtle perspiration changes resulting from medications (Provitera et al., 2010). The thermoregulatory sweat test stimulates entire body sweating, including central and peripheral components, but does not localize the sweating lesion site (Fealey et al., 1989). Simple colorimetric procedures, such as the Neuropad test, evaluate sweating abnormalities but do not provide detailed analysis (Quattrini et al., 2008). In addition, abundant in vivo preclinical data are necessary for the verification of anti-perspiration efficacy before clinical trials; however, studies, particularly using mouse models, are rare.

The iodine-starch test is a well-known chemical reaction between starch and iodine, which instantly produces an intense blue-black color. The test was first described in 1814 (Colin et al., 1814) and first applied in 1928 as a medical test for visualizing sudomotor function (perspiration or sweating) (Minor, 1928). Polyiodides complexed with the amylose helix in starch form infinite polyiodide homopolymers and produce the blue-black color, whereas non-ionized iodine dissolved in nonpolar solvents and individual iodide (I) do not react with starch (Madhu et al., 2016). The triiodide (I3) ion is the simplest polyiodide, which is yellow-to-brown in aqueous conditions with no starch. In addition, the blue-black color of the triiodide-starch complex is so deep, which can also be detected visually when the concentration of iodine is as low as 2 × 10−5 M at 20°C. Consequently, the iodine-starch test has been used as a well-established diagnostic tool to evaluate underactive (hypohidrosis) and overactive (hyperhidrosis) sweating (Chia et al., 2013).

Even in the mouse sweat assays, various errors may occur owing to arbitrary judgment because the number of sweating spots, attributed to the iodine-starch reaction, is manually counted to quantitate the sweating score (Nejsum et al., 2002; Liu et al., 2017). For the data analysis, image-processing using ImageJ, a free software provided by the National Institutes of Health (NIH), can be utilized to eliminate possible arbitrary judgment and errors. In this protocol, we generated a mouse sweat-assay model and used ImageJ for image analysis (Ban et al., 2020). The sweating area on the skin of hind footpads of anesthetized mice was stained blue-black using an iodine-starch test. The blue-black pixels were extracted from the footpad images obtained, adjusted using the Auto Local Threshold function in ImageJ, and measured to the area fraction (sweating area %). Using the present protocol, a clear difference between the control and the antiperspirant-administered mice was observed with respect to the sweating area % with no error. Moreover, whether expected antiperspirants exploit either circulatory-systematic or focal anti-perspiration efficacy can also be assessed using this protocol.

Materials and Reagents

  1. Pipet tips, 20 µl, 200 µl, and 1,000 µl (Gilson, catalog numbers: F161671, F1739311, and F161451, respectively)

  2. 0.2 μm syringe filter

  3. Conical tube with lid, 50 ml (SPL Life Sciences, catalog number: 50050)

  4. Microtubes, 200 µl and microtube 1.5 ml (Sigma-Aldrich, catalog number: Z374873; Eppendorf, catalog number: EP0030125150)

  5. Sterilized needles for syringe, 17 gauge (Korea vaccine)

  6. Sterilized syringe filter (Sartorius, catalog number: 17764-ACK)

  7. Sterilized syringes for general use, 1 and 50 ml (Korea vaccine)

  8. Mice (6-week-old Institute of Cancer Research, weighing 25-35 g; Koatec Co., Pyeongtaek, Korea)

  9. Myricetin (Sigma-Aldrich, catalog number: M6760)

  10. Glyceryl tristearate (Sigma-Aldrich, catalog number: T5016)

  11. Glyceryl trioctanaote (Sigma-Aldrich, catalog number: T9126)

  12. Brij S100 (Sigma-Aldrich, catalog number: 466387)

  13. Pluronic P-123 (Sigma-Aldrich, catalog number: 435465)

  14. Pilocarpine hydrochloride (pilocarpine) (Tokyo Chemical Industry, catalog number: P0434)

  15. Glycopyrrolate bromide (glycopyrrolate) (Tokyo Chemical Industry, catalog number: G0392)

  16. Neuronox 100U (botulinum neurotoxin type A, BoNT/A) (Medytox)

  17. Alfaxalone solution, 10 mg/ml (Alfaxan) (Alfaxan Multidose, Jurox Animal Health)

  18. Xylazine hydrochloride solution, 23.32 mg/ml (Rumpun, Bayer)

  19. Starch (Millipore, catalog number: 101252)

  20. Castor oil (Sigma-Aldrich, catalog number: 259853)

  21. Iodine (Sigma-Aldrich, catalog number: 207772)

  22. Ethanol (Sigma-Aldrich, catalog number: 02891)

  23. Dimethyl sulfoxide (DMSO) (Sigma-Aldrich, catalog number: 276855)

  24. HyClone phosphate-buffered saline, pH 7.4 (PBS) (GE Healthcare, catalog number: SH30256.01)

  25. Rumpun solution (see Recipes)

  26. Anesthesia solution (see Recipes)

  27. Pilocarpine solution (see Recipes)

  28. Glycopyrrolate solution (see Recipes)

  29. Myricetin solution (see Recipes)

  30. Myricetin-loaded lipid nanoparticles (M-LNPs) (see Recipes)

  31. Starch solution (see Recipes)

  32. Iodine solution (see Recipes)


  1. Pipets (20, 200, and 1,000 µl) (Gilson, catalog numbers: FA10003M, FA10005M, and FA10006M, respectively)

  2. Electric pharynx

  3. Pioneer analytical balance, capacity 320 g (Ohaus, model: PX323E)

  4. Cages for stabilizing between the time of anesthetic injection and complete anesthesia

  5. Paintbrushes to apply iodine and starch solutions on the hind footpads of mice

  6. Digital camera (Canon, model: EOS 800D)

  7. Mouse restrainers were prepared by making holes in the plastic wall of conical tubes and the lid using an electric pharynx (Figure 1)


  1. ImageJ (NIH, http://rsb.info.nih.gov/ij/) for image-processing and determination of the sweating area %

  2. SigmaPlot 10.0 Windows version (IBM Co.) for drawing graphs

  3. SPSS Statistics version 23.0 software (IBM Co.) for the statistical analyzes


Male mice (5 mice per cage) were housed at a temperature of 21 ± 1°C and a humidity of 55 ± 10% under controlled laboratory conditions and maintained with food and water ad libitum. Mice were tested during the light phase of a 12-h light cycle (lights on at 6:00 am and off at 6:00 pm).

  1. Anesthesia

    1. Six-week-old Institute of Cancer Research (ICR) mice, weighing 25-35 g, were purchased from Koatec Co. (Pyeongtaek, Korea). After arrival, the mice were housed in an animal facility for 7 days for acclimatization.

    2. The mice were anesthetized by intraperitoneal injection of anesthesia solution (8.5 ml·kg−1; Recipe 2). All procedures for the sweat assay were terminated within 1 h before the mice woke up.

    3. The mice were placed on a 37°C-heating pad in an empty cage for 5 min without any stimulus (e.g., noise and light) for stabilization of anesthesia.

    4. The anesthetized mice were carefully transported into a mouse restrainer (Equipment 7) and covered using a screw-lid.

  2. Drug administration

    1. The drug solutions (pilocarpine, glycopyrrolate, BoNT/A, myricetin, and M-LNP, see the Recipes section) were prepared and warmed to 37°C immediately before administration. If needed, the drug solutions were sterilized by passing through a 0.2-μm syringe filter before use.

    2. Administration of the drug solution after stabilization of anesthesia

      1. Application on hind footpad skin (Figure 1A)

        1. The drug solution was pipetted onto the hind footpad skin. Precautions were taken not to over-apply the solution.

        2. A mouse-containing restrainer was placed on the heating pad for 30 min to allow sufficient time for absorption and action of the agents.

      2. Subcutaneous injection (Figure 1B)

        1. A needle-equipped syringe was loaded with drug solution. Care was taken not to inject the drug solution over 20 µl to avoid excessive bulging of the skin.

        2. To remove the air in the syringe column, the piston was pressed while keeping the syringe with the needle-side up.

        3. The needle was slowly inserted into the right hind footpad skin as close to the surface as possible, while maintaining an almost parallel angle between the needle and the skin surface to avoid subcutaneous structural damage and bleeding. Thin needles (17 gauge) were used to minimize skin damage, and fresh needles were used every time to prevent infection.

        4. The drug solution was injected and the needle was removed. If saliva secretion stimulants such as pilocarpine hydrochloride were used, saliva overflow was eliminated using a wipe to prevent suffocation.

        5. Any overflow was wiped off.

        6. The mouse-containing restrainer was placed down on the heating pad for 10 min to allow sufficient time for action of the agents.

    Figure 1. Administration of the drugs in the sweat assay after anesthesia. A. Procedures for the application of the drug solutions on the skin of the right hind footpads of mice. B. Procedures for the subcutaneous injection of the drug solutions into the right hind footpads of mice.

  3. Iodine-starch test (Figure 2)

    1. After administration of the drugs (pilocarpine, glycopyrrolate, BoNT/A, myricetin, and M-LNP), the remainder of the solution was wiped off the footpad skin, the skin washed with warm PBS, and the liquid wiped off again.

    2. Using a paintbrush, the iodine solution was applied to both the left and right hind footpads and allowed to dry for 1 min. The paintbrush used was wider than the horizontal width of the hind footpads, which enabled painting of enough iodine solution at once. Further, the paintbrush was soaked in iodine solution before use to avoid the formation of iodine crystals resulting from ethanol-drying. To avoid the formation of spots with iodine crystals, which can influence the values of the resulting sweating area %, application was done only once.

    3. To block sweat evaporation from the skin surface, a coat of starch-oil solution was applied once on the footpad skin by brushing at 37°C. A different paintbrush was used for this step. To avoid starch aggregation during the application, the starch solution was stirred.

    4. Immediately after coating with the starch solution, photographs of the hind footpad were acquired under fixed conditions of distance, magnification, and exposure. Atmospheric exposure of the starch-covered hind footpads for longer than 5 min can affect the unwanted color change due to moisture; thus, we suggest 5 min as the time limit for determining the sweating area (%).

    5. Description of the test: The iodine-in-ethanol solution was first applied over the footpad skin and the ethanol was then evaporated for 1 min. Next, the starch-in-oil solution was applied over the footpad skin covered with iodine. The sweat is captured between the skin and the oil layer since the moisture cannot diffuse out through the hydrophobic oil layer. In turn, dissolution into the captured sweat makes the brownish iodine react with the starch and turns a blue-black color as a result of ionization to polyiodide ions. In addition, the concentrations of starch and iodine in the starch solution and iodine solution, respectively, are high enough to induce the blue-black color change if the mice sweat.

      Note: The number of solution applications, once each, is more important than the volume. Therefore, the color can be changed to blue-black by each serial application of the iodine and starch solutions only once, without any risk of a lack of color change.

    Figure 2. Iodine-starch test in the sweat assay. A. Procedures of the test. B. Illustration of an expected mechanism for the test.

Data analysis

  1. Image-processing and sweating area % determination

    1. Area selection (Figure 3A): The images of the hind footpad skin of mice were individually processed in ImageJ and only the footpad area was cropped.

    2. Modifying the images (Figure 3A): “Image > Type > RGB stack”, the cropped real color images of the footpad skin area were converted into grayscale.

    3. Auto local threshold (Figure 3B): The grayscale images of the blue stack were adjusted by selecting “Image > Adjust > Auto Local Threshold” using the Phansalkar method. Radius: 15; Parameter 1 and 2: 0; check “White objects on black background”; uncheck “Stack.” Black pixels in the adjusted images indicate the sweating spot on the hind footpad skin. As shown in Figure 3C, the Phansalkar method is the best way to select the sweating spots among all the modules available the Auto Local Threshold.

      Note: Do not touch any initial settings for the Auto Local Threshold except the Phansalkar method selection.

    4. Determination of the sweating area % (Figure 3D): The measurements were set by selecting “Analyze > Set Measurements” and checking “‘Area fraction” before the measurement. The area fraction values of the black pixels in the adjusted images were measured and recorded by either pressing the “Ctrl + M” keys on a keyboard or clicking “Analyze > Measure.” The sweating area % was calculated by subtracting the area fraction from 100%.

    Figure 3. ImageJ-based image-processing and measurement of the sweating area %. A. Area-selection of the mouse footpad skin in the obtained image and conversion of the selected image into grayscale (the blue stack among red, green, and blue stacks) using RGB stack. B. Adjustment of the blue stack-based grayscale image using the Auto Local Threshold, according to the Phansalkar method, for extracting the sweating area. C. The adjusted images using all the modules for the Auto Local Threshold, including the Bernsen, Contrast, Mean, Median, MidGrey, Niblack, Otsu, Phansalkar, and Sauvola methods. D. Establishing the method for the measurement of the Area fraction that is used for determining the sweating area % values.

  2. Assessment of the reliability of image-processing

    All the sweating area % values of each group were determined from the footpad skin images obtained at different predetermined times (0, 1, 2, 3, 4, and 5 min) after the iodine-starch test using ImageJ (Figure 4A and 4B). The reliability of the image-processing for determining the sweating area % values of each group was assessed using the coefficient of determination (R2) of the linear-fitting curves, as shown in Figure 4C. Reliable data: R2 ≥ 0.9; unreliable data: R2 < 0.9. Unreliable datasets were excluded when determining the sweating area % values of a certain group.

    Figure 4. Reliability assessment of the image-processing procedures for determining the sweating area %. A. Procedures for the representative image-processing of the right hind footpad skin that is not administered with any drug (non-treatment) for 5 min after the initiation of the iodine-starch test. B. Area fraction values (%Area) determined 0, 1, 2, 3, 4, and 5 min after the procedures for the representative image-processing. C. The linear-fitting curves for the sweating area % values of non-treatment, negative control (Pilocarpine) and positive control (Glycopyrrolate) groups. Data are expressed as the mean ± SD (standard deviation; n = 5).

  3. Statistical analysis and plotting the graph for the sweating area %

    All data from the sweat assay are reported as the average and standard deviation (SD) of at least five independent mouse experiments. Statistical analyses were performed using a Student’s t-test with SPSS Statistics. The bar graph including the average and SD of the sweating area % value for each mouse group was generated using SigmaPlot 10.0 (Figure 5).

    Figure 5. Representative sweating area % values of the mouse hind-footpad skin 5 min after the iodine-starch test. Sweating area % values (%Area of black pixel fraction) on (A) right hind footpads, directly treated (by either subcutaneous injection or applied on the skin), and (B) left hind footpads, not treated with drug. Groups: no treatment, PBS (0.8 ml/kg), pilocarpine HCl (2.5 mg/kg, negative control), glycopyrrolate bromide (0.25 mg/kg, positive control), BoNT/A (0.8 U/kg, positive control), myricetin (M; 0.8 mg/kg), and M-LNP (myricetin-loaded lipid nanoparticle; 0.8 ml/kg). Data are expressed as the mean ± SD (n = 5; Student’s t-test; ns, non-significant; *, P < 0.05; **, P < 0.01).

  4. Assessment of the focal anti-perspiratory effect of drugs

    Sweating area % values for left hind footpads, to which drugs were not administered, are represented as separate graphs to assess the circulatory-system or topical efficacy of the drugs. Herein, the sweating area % reduction in both the right and left footpads indicates the circulatory-system anti-perspiration efficacy of the drug, whereas that only in the right footpad indicates the topical efficacy.


  1. Rumpun solution

    Rumpun (xylazine hydrochloride, 23.32 mg/ml) diluted with PBS to 20 mg/ml xylazine hydrochloride

  2. Anesthesia solution

    Mixture of Alfaxan and Rumpun solution at a volumetric ratio of 16:1

  3. Pilocarpine solution

    Pilocarpine hydrochloride diluted with PBS to 3.125 mg/ml

  4. Glycopyrrolate solution

    Glycopyrrolate bromide diluted with PBS to 312.5 μg/ml

  5. Myricetin solution

    5% (w/v) myricetin solution (in DMSO) diluted with PBS to 1 mg/ml immediately before administration to prevent crystal formation

  6. Myricetin-loaded lipid nanoparticles (M-LNPs)

    M-LNPs prepared using the method previously reported by our group (Ban et al., 2020); concentration of myricetin in the M-LNP system: 1 mg/ml

  7. Starch solution

    10% (w/v) starch dispersed in castor oil and vortexed immediately before use to prevent sedimentation

  8. Iodine solution

    3.5% (w/v) iodine dissolved in ethanol


This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1A2C2101964, 2017R1A6A1A03015642, and 2018R1D1A1B07050508). This protocol was derived from Ban et al. (2020).

Competing interests

There are no competing interests to be declared.


This study was approved by the Ethics Committee of Sungkyunkwan University (approval no. SKKUIACUC2018-04-11-2). All mice included in this study were housed in a facility at Sungkyunkwan University, and all experimental protocols were approved by the Animal Care and Use Committee of Sungkyunkwan University.


  1. Ban, C., Park, J. B., Cho, S., Kim, H. R., Kim, Y. J., Choi, Y. J., Chung, W. J. and Kweon, D. H. (2020). Reduction of focal sweating by lipid nanoparticle-delivered myricetin. Sci Rep 10(1): 13132.
  2. Chia, K. Y. and Tey, H. L. (2013). Approach to hypohidrosis. J Eur Acad Dermatol Venereol 27(7): 799-804.
  3. Colin, J. J. and Gaultier de Claubry, H. F. (1814). Mémoire sur les combinassions de l'iode avec les substances végétales et animaux. Ann Chim Phys 90: 87-110.
  4. Fealey, R. D., Low, P. A. and Thomas, J. E. (1989). Thermoregulatory sweating abnormalities in diabetes mellitus. Mayo Clin Proc 64(6): 617-628.
  5. Haider, A. and Solish, N. (2005). Focal hyperhidrosis: diagnosis and management. CMAJ 172(1): 69-75.
  6. Liu, Y., Sebastian, B., Liu, B., Zhang, Y., Fissel, J. A., Pan, B., Polydefkis, M. and Farah, M. H. (2017). Sensory and autonomic function and structure in footpads of a diabetic mouse model. Sci Rep 7: 41401.
  7. Madhu, S., Evans, H. A., Doan-Nguyen, V. V., Labram, J. G., Wu, G., Chabinyc, M. L., Seshadri, R. and Wudl, F. (2016). Infinite Polyiodide Chains in the Pyrroloperylene-Iodine Complex: Insights into the Starch-Iodine and Perylene-Iodine Complexes. Angew Chem Int Ed Engl 55(28): 8032-8035.
  8. Minor, V. (1928). Ein neues Verfahren zu der klinischen Untersuchung der Schweißabsonderung. Dtsch Z Nervenheilkd 101(1): 302-308.
  9. Nejsum, L. N., Kwon, T. H., Jensen, U. B., Fumagalli, O., Frokiaer, J., Krane, C. M., Menon, A. G., King, L. S., Agre, P. C. and Nielsen, S. (2002). Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc Natl Acad Sci U S A 99(1): 511-516.
  10. Provitera, V., Nolano, M., Caporaso, G., Stancanelli, A., Santoro, L. and Kennedy, W. R. (2010). Evaluation of sudomotor function in diabetes using the dynamic sweat test. Neurology 74(1): 50-56.
  11. Quattrini, C., Jeziorska, M., Tavakoli, M., Begum, P., Boulton, A. J. and Malik, R. A. (2008). The Neuropad test: a visual indicator test for human diabetic neuropathy. Diabetologia 51(6): 1046-1050.
  12. Solish, N., Bertucci, V., Dansereau, A., Hong, H. C., Lynde, C., Lupin, M., Smith, K. C., Storwick, G. and Canadian Hyperhidrosis Advisory, C. (2007). A comprehensive approach to the recognition, diagnosis, and severity-based treatment of focal hyperhidrosis: recommendations of the Canadian Hyperhidrosis Advisory Committee. Dermatol Surg 33(8): 908-923.
  13. Strutton, D. R., Kowalski, J. W., Glaser, D. A. and Stang, P. E. (2004). US prevalence of hyperhidrosis and impact on individuals with axillary hyperhidrosis: results from a national survey. J Am Acad Dermatol 51(2): 241-248.


[摘要]在临床试验之前,体内汗液定量测定是开发局灶多汗症治疗药物所需要的; ħ H但是,在体内测定法,特别是小鼠模型,是罕见的。即使我Ñ汗试验使用小鼠,出汗是定量itat的ED通过手动计数出汗斑点,这可以向由于任意判定各种错误的数目。在这项研究中,我们开发了一个鼠标汗水试验模型和孔定量方法达荷兰国际集团出汗,除去可能出现的错误的数量。使用碘的淀粉在蓖麻油覆盖后测试anesthet的脚掌皮肤美化版小鼠导致出汗区域被染成蓝色-黑色。麻醉和治疗后用药物(毛果芸香碱,格隆溴铵,肉毒杆菌神经毒素,杨梅黄酮,杨梅黄酮和加载的脂质纳米颗粒小号),足垫皮肤的剩余区域从所获取的足垫消除图像使用ImageJ。从脚踏板图像中提取的蓝光像素使用Phansalkar方法自动调整,其中蓝色区域的百分比是根据整个后脚踏板皮肤区域确定的,最终指示出汗区域的百分比。使用该小鼠模型和用于汗水测定分析小号,明确二fference对照组和止汗剂给药组之间相对于所述出汗面积%,没有观察到错误。总之,该测定法可用作筛选潜在止汗药的临床前工具。



[背景]人口众多 -近3%的25岁的人- 64年-经验焦点多汗症,特发性异常,其特征在于超-出汗集中在身体的某些区域,例如,手掌,脚掌,面部,和腋下(海德尔。等人,2005)。它会干扰日常活动;因此,这种情况造成了巨大的情感,心理,社会和职业负担(Strutton等,2004),甚至导致了社交焦虑症(Solish等,2007)。在用于治疗局灶性多汗症的药物或药物的开发过程中,评估出汗的合理分析方法对于评估过度出汗症状是必要的。临床实践和研究中使用的几种测试不够灵敏,无法检测出药物引起的细微的汗液变化(Provitera等,2010)。体温调节性汗液测试可刺激整个身体的汗液,包括中央和周围的成分,但不会使出汗的病变部位局部化(Fealey等,1989)。简单的比色程序(例如Neuropad测试)可评估出汗异常,但未提供详细分析(Quattrini等人,2008)。此外,大量的临床前临床数据对于在临床试验之前验证止汗离子的功效是必不可少的。^ h H但是,研究,特别是利用小鼠模型中,并不多见。

碘-淀粉试验是淀粉和碘,它立即产生之间的公知的化学反应š一个强烈的蓝色-黑色。该测试首次在1814年进行了描述(Colin等,1814),并在1928年首次用作医学测试,以显示sudomotor功能(出汗或出汗)(Minor,1928年)。聚碘络合的淀粉形式无限多碘均聚物的直链淀粉螺旋和产生蓝黑色,而非离子化碘溶解在非极性溶剂和个体碘化物(I - )不与淀粉反应(马杜等人,2016) 。三碘化物(I 3 - )离子是最简单的多碘,其是黄色〜褐色与无淀粉水性条件。另外,三碘化物-淀粉复合物的蓝黑色非常深,当碘的浓度在20°C时低至2×10 -5 M时,也可以目视检测到。因此,碘-淀粉试验已被用来作为良好-建立的诊断工具,以评估运动不足(少汗)和过度活动性(多汗症)出汗(正大等人,2013年)。

即使在小鼠汗试验,因为出汗斑点的数量,归因于碘可能由于任意判定发生各种错误α-淀粉反应,被手动计数,以孔定量泰特发汗得分(Nejsum等人,2002;刘等人。,2017) 。对于数据分析,使用ImageJ,由全国学院提供一个免费的软件图像处理小号卫生(NIH),可以被用来消除可能的任意判断和错误。在此协议中,我们生成了一个小鼠汗液检测模型,并将ImageJ用于图像分析(Ban等人,2020年)。对麻醉小鼠的后足垫皮肤出汗面积染成蓝色-使用黑色ñ碘型淀粉测试。蓝色-黑色像素从得到的足垫图像中提取,使用自动局部阈值功能在ImageJ的调整,并测量到的面积率(出汗面积%)。使用本方案,相对于出汗面积%,观察到对照和给予止汗剂的小鼠之间有明显的差异,没有错误。此外,是否预期止汗利用任一循环-系统或局灶性止汗功效也可使用此协议评估。

关键字:汗液分析, 小鼠模型, 汗液定量, 鼠后足底汗, 非任意判断的定量


移液管尖端,20微升,200微升,和1 ,000微升(吉尔森,目录号:F161671,F1739311,和F161451,分别地)
带盖锥形管,50毫升(SPL Life Sciences,目录号:50050)
200 µl微量管和1.5 ml微量管(Sigma-Aldrich,目录号:Z374873; Eppendorf,目录号:EP0030125150)
小鼠(6周龄研究所癌症研究,体重25 - 35克; Koatec有限公司平泽,韩国)
Brij S100(Sigma-Aldrich,目录号:466387)
Pluronic P-123(Sigma-Aldrich,目录号:435465)
Neuronox 100U(A型肉毒神经毒素,BoNT / A)(Medytox )
Alfaxalone溶液,10 mg · ml -1 (Alfaxan )(Alfaxan Multidose,Jurox动物保健)
盐酸赛拉嗪溶液,23.32 mg · ml -1 (Rumpun ,Bayer)
HyClone磷酸盐缓冲盐水,pH 7.4(PBS)(GE Healthcare,目录号:SH30256.01)


数码相机(佳能,型号:EOS 800D)


ImageJ(NIH,http: //rsb.info.nih.gov/ij/ ),用于图像处理和确定出汗面积%
SigmaPlot 10.0 Windows版本(IBM Co.),用于绘制图形
用于统计分析的SPSS Statistics 23.0版软件(IBM Co.)


雄性小鼠(5只小鼠每笼)圈养在温度21±1 ℃,和一个55±10%的控制的实验室条件下的湿度和食物和水保持自由采食。在12小时光照周期的光照阶段对小鼠进行了测试(上午6:00点亮,下午6:00熄灭)。

癌症研究(ICR)小鼠,体重25六周龄研究所- 35克,自购Koatec有限公司(平泽,韩国)。到任后,小鼠被安置在一个动物设施7天以适应环境。
小鼠瓦特ERE麻醉由麻醉溶液的腹膜内注射(8.5 ml的·千克-1 ;配方2)。用于汗水测定所有程序均在1个小时内终止是前小鼠瓦特Ó柯达。
麻醉小鼠瓦特ERE小心运送到小鼠限制器(设备7 ),并使用螺旋盖覆盖。

该药物溶液(毛果芸香碱,格隆溴铵,的BoNT / A,杨梅黄酮,和M-LNP,见配方小号部)瓦特ERE制备,并温热至37℃ ,立即给药之前。如果需要,药物溶液通过一个0.2通过灭菌-微米注射器过滤器在使用前。


                我odine -淀粉试验(图2)
后的药物(在施用毛果芸香碱,格隆溴铵,的BoNT / A,杨梅黄酮,和M-LNP ),其余的的溶液擦去足垫皮肤,皮肤用温暖PBS,并在液体再擦去。



                修改所述图像(图3A):“图像>类型> RGB栈”,将裁剪的实际彩色图像的足垫皮肤区域被转换成克一个yscale。
                 自动局部阈值(图3B):在GR一个蓝色叠层的yscale图像通过调整选择“图像>调整>汽车局部阈值”使用Phansalkar方法。半径:15;参数1和2:0;选中“黑色背景上的白色物体”;取消选中“堆栈” 。调整后的图像中的黑色像素表示后脚掌皮肤上的出汗点。如图3C所示,该Phansalkar方法是选择出汗斑点的最佳方式中的所有可用的自动局部阈值的模块。

                出汗面积百分比的确定(图3D):通过选择“分析>设置测量值”并在测量前检查“面积分数”来设置测量值。黑色像素的调整后的图像面积率的值分别为米通过按按“Ctrl + M”键的键盘上或点击“分析>测量easured并记录。通过从100%中减去面积分数来计算出汗面积%。

图3.基于ImageJ的图像处理和出汗面积%的测量。A.区域选择所获得的图像在小鼠足垫皮肤和转换所选图像的成克的一个使用RGB堆yscale(红色,绿色,和蓝色的堆叠蓝色栈)。B.蓝色基于堆栈的GR的调整一个yscale使用自动局部阈值,图像根据所述Phansalkar方法,用于提取出汗区域。C.使用“自动局部阈值”的所有模块(包括Bernsen,Contrast,Mean,Median,MidGrey ,Niblack ,Otsu,Phansalkar和Sauvola方法)调整后的图像。D.建立用于确定出汗面积%值的面积分数的测量方法。

各组的所有出汗面积%值确定从所述后在不同的预定时间获得的足垫皮肤图像(0,1,2,3,4,和5分钟)碘-淀粉使用ImageJ(图4A和4B)测试。所述图像处理用于确定每个组的出汗面积%值的可靠性进行评估使用的决定系数(- [R 2的线性拟合曲线的),如图4C所示。可靠的数据:- [R 2 ≥ 0.9; 数据不可靠:R 2 <0.9。在确定特定组的出汗面积%值时,将不可靠的数据集排除在外。

图4.确定出汗面积%的图像处理程序的可靠性评估。A.在开始进行碘-淀粉测试后5分钟内未使用任何药物(未治疗)的右后足垫皮肤的代表性图像处理程序。B.在代表性图像处理的程序之后的0、1、2、3、4和5分钟确定面积分数值(%Area)。C.非治疗组,阴性对照组(毛果芸香碱)和阳性对照组(甘草次酸盐)的出汗面积%值的线性拟合曲线。数据表示为平均值±SD(标准偏差;n = 5)。

来自汗液测定法的所有数据均报告为至少五个独立小鼠实验的平均值和标准偏差(SD)。使用带有SPSS Statistics的Student t检验进行统计分析。使用SigmaPlot 10.0生成包括每个小鼠组出汗面积%值的平均值和SD的条形图(图5)。

图5.碘-淀粉测试后5分钟,小鼠后足垫皮肤的代表性出汗面积%值。上出汗面积%的值(黑象素部分的面积%)(A)右后肢足垫,直接进行处理(由任一皮下注入离子或施加在皮肤上),和(B)左后肢足垫,没有吨用药物处理。组:不治疗,PBS(0.8 ml ·kg -1 ),盐酸匹洛卡品(2.5 mg ·kg -1 ,阴性对照),格隆溴铵溴化物(0.25 mg ·kg -1 ,阳性对照),BoNT / A(0.8 U ·kg -1 ,阳性对照),杨梅素(M; 0.8 mg ·kg -1 )和M-LNP(杨梅素负载的脂质纳米颗粒; 0.8 ml ·kg -1 )。数据表示为平均值±SD(n = 5; Student's t检验; ns,无显着性; *,P <0.05; **,P <0.01)。



用PBS稀释的Rumpun (盐酸赛拉嗪23.32 mg · ml -1 )稀释至20 mg · ml -1赛拉嗪盐酸盐


PBS将盐酸匹罗卡品稀释至3.125 mg· ml -1

用PBS稀释的溴化格隆溴铵至312.5μg· ml -1

给药前立即用PBS将5%(w / v)的杨梅素溶液(在DMSO中)稀释至1 mg· ml -1 ,以防止形成晶体

用我们小组先前报道的方法制备的M-LNPs (Ban et al。,2020); M-LNP系统中杨梅素的浓度:1 mg ·ml -1

10%(w / v)淀粉分散在蓖麻油中并在使用前立即涡旋以防止沉淀

溶于乙醇的3.5%(w / v)碘


这项工作是由韩国国家研究基金会(NRF)的支持授予由韩国政府(MSIT)(第2020R1A2C2101964,2017R1A6A1A03015642资助,并2018R1D1A1B07050508)。该协议源自(Ban et al。,2020)。




这项研究是经Ë thics Ç韩国成均馆大学(批准文号SKKUIACUC2018-04-11-2)的ommittee。这项研究中包括的所有小鼠均被安置在成均馆大学的设施中,所有实验方案均已得到成均馆大学动物保护和使用委员会的批准。


Ban,C.,Park,JB,Cho,S.,Kim,HR,Kim,YJ,Choi,YJ,Chung,WJ和Kweon ,DH(2020)。通过脂质纳米颗粒递送的杨梅素减少局部出汗。科学代表10(1):13132。
Chia,KY和Tey ,HL(2013)。多汗症的方法。J Eur Acad Dermatol Venereol 27(7):799-804。
约翰·科林(Colin)和HF·高迪埃·德·克劳布里(Gaultier de Claubry)(1814)。蜜饯和动漫的蜜饯大事记。Ann Chim Phys 90:87-110。
Fealey ,RD,Low,PA和Thomas,JE(1989)。糖尿病患者的体温调节性出汗异常。Mayo Clin Proc 64(6):617-628。
Haider,A.和Solish ,N.(2005)。局灶性多汗症:诊断和管理。CMAJ 172(1):69-75。
Liu,Y.,Sebastian,B.,Liu,B.,Zhang,Y.,Fissel ,JA,Pan,B.,Polydefkis ,M.和Farah,MH(2017)。糖尿病小鼠模型脚垫中的感觉和自主功能及结构。科学代表7:41401。
Madhu,S.,Evans,HA,Doan-Nguyen,VV,Labram ,JG,Wu,G.,Chabinyc ,ML,Seshadri,R.和Wudl ,F.(2016)。吡咯戊烯-碘络合物中的无限多碘链:淀粉-碘和Per-碘络合物的见解。Angew Chem Int Ed Engl 55(28):8032-8035。
Minor,V.(1928年)。Ein neues Verfahren zu der klinischen Untersuchung derSchweißabsonderung。Dtsch Z Nervenheilkd 101(1):302-308。
Nejsum ,LN,Kwon,TH,Jensen,UB,Fumagalli ,O.,Frokiaer ,J.,Krane,CM,Menon,AG,King,LS,Agre ,PC和Nielsen,S。(2002)。Aquaporin-5在汗腺质膜中的功能需求。PROC国家科科学院科学USA 99(1):511-516。
Provitera ,V.,Nolano ,M.,Caporaso ,G.,Stancanelli ,A.,Santoro,L.和Kennedy,WR(2010)。使用动态汗液测试评估糖尿病的运动功能。神经病学74(1):50-56。
Quattrini ,C.,Jeziorska ,M.,Tavakoli ,M.,Begum,P.,Boulton,AJ和Malik,RA(2008)。Neuropad测试:用于人类糖尿病性神经病的视觉指示器测试。糖尿病51(6):1046-1050。
Solish ,N.,Bertucci ,V.,Dansereau,A.,Hong,HC,Lynde,C.,Lupin,M.,Smith,KC,Storwick ,G。和Canadian Hyperhidrosis Advisory,C。(2007)。局灶性多汗症的识别,诊断和基于严重程度的综合治疗方法:加拿大多汗症咨询委员会的建议。Dermatol Surg 33(8):908-923。
Strutton ,DR,Kowalski,JW,Glaser,DA和Stang ,PE(2004)。美国多汗症的患病率及其对腋窝多汗症个体的影响:一项全国调查的结果。美国医学会皮肤病杂志(J Am Acad Dermatol)51(2):241-248。
  • English
  • 中文翻译
免责声明 × 为了向广大用户提供经翻译的内容,www.bio-protocol.org 采用人工翻译与计算机翻译结合的技术翻译了本文章。基于计算机的翻译质量再高,也不及 100% 的人工翻译的质量。为此,我们始终建议用户参考原始英文版本。 Bio-protocol., LLC对翻译版本的准确性不承担任何责任。
Copyright: © 2021 The Authors; exclusive licensee Bio-protocol LLC.
引用:Ban, C. and Kweon, D. (2021). Objective Quantitation of Focal Sweating Areas Using a Mouse Sweat-assay Model. Bio-protocol 11(11): e4047. DOI: 10.21769/BioProtoc.4047.

如果您对本实验方案有任何疑问/意见, 强烈建议您发布在此处。我们将邀请本文作者以及部分用户回答您的问题/意见。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片的形式来说明遇到的问题。

如果您对本实验方案有任何疑问/意见, 强烈建议您发布在此处。我们将邀请本文作者以及部分用户回答您的问题/意见。为了作者与用户间沟通流畅(作者能准确理解您所遇到的问题并给与正确的建议),我们鼓励用户用图片的形式来说明遇到的问题。