Trinadh Venkata Satish Tammana
  • Research scientist, Radboud University Medical Center
研究方向
  • Cell Biology
Preparation of HeLa Total Membranes and Assay of Lipid-inhibition of Serine Palmitoyltransferase Activity
HeLa全膜的制备及其对丝氨酸-棕榈酰转移酶活性的抑制作用
作者:Muthukumar Kannan, Deanna L. Davis, John Suemitsu, Christopher D. Oltorik and Binks Wattenberg日期:06/20/2020,浏览量:3306,Q&A: 0
Serine palmitoyltranferase (SPT) is a pyridoxal 5′ phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of de novo synthesis of sphingolipids. SPT activity is homeostatically regulated in response to increased levels of sphingolipids. This homeostatic regulation of SPT is mediated through small ER membrane proteins termed the ORMDLs. Here we describe a procedure to assay ORMDL dependent lipid inhibition of SPT activity. The assay of SPT activity using radiolabeled L-serine was developed from the procedure established by the Hornemann laboratory. The activity of SPT can also be measured using deuterated L-serine but it requires mass spectrometry, which consumes money, time and instrumentation. The ORMDL dependent lipid inhibition of SPT activity can be studied in both cells and in a cell free system. This assay procedure is applicable to any type of mammalian cell. Here we provide the detailed protocol to measure SPT activity in the presence of either short chain (C8-ceramide) or long chain ceramide (C24-ceramide). One of the greatest advantages of this protocol is the ability to test insoluble long chain ceramides. We accomplished this by generating long chain ceramide through endogenous ceramide synthase by providing exogenous sphingosine and 24:1 acyl CoA in HeLa cell membranes. This SPT assay procedure is simple and easy to perform and does not require sophisticated instruments.
Application of Mechanical Forces on Drosophila Embryos by Manipulation of Microinjected Magnetic Particles
机械力应用于果蝇胚胎的磁性粒子显微注射操作
作者:Arturo D’Angelo and Jérôme Solon日期:05/05/2020,浏览量:3243,Q&A: 0
Cells generate mechanical forces to shape tissues during morphogenesis. These forces can activate several biochemical pathways and trigger diverse cellular responses by mechano-sensation, such as differentiation, division, migration and apoptosis. Assessing the mechano-responses of cells in living organisms requires tools to apply controlled local forces within biological tissues. For this, we have set up a method to generate controlled forces on a magnetic particle embedded within a chosen tissue of Drosophila embryos. We designed a protocol to inject an individual particle in early embryos and to position it, using a permanent magnet, within the tissue of our choice. Controlled forces in the range of pico to nanonewtons can be applied on the particle with the use of an electromagnet that has been previously calibrated. The bead displacement and the epithelial deformation upon force application can be followed with live imaging and further analyzed using simple analysis tools. This method has been successfully used to identify changes in mechanics in the blastoderm before gastrulation. This protocol provides the details, (i) for injecting a magnetic particle in Drosophila embryos, (ii) for calibrating an electromagnet and (iii) to apply controlled forces in living tissues.
Conjugation of Fab’ Fragments with Fluorescent Dyes for Single-molecule Tracking on Live Cells
Fab片段结合荧光染料用于活细胞单分子示踪
作者:I-Ting Teng, Xiangning Bu and Inhee Chung日期:09/20/2019,浏览量:6091,Q&A: 0
Our understanding of the regulation and functions of cell-surface proteins has progressed rapidly with the advent of advanced optical imaging techniques. In particular, single-molecule tracking (SMT) using bright fluorophores conjugated to antibodies and wide-field microscopy methods such as total internal reflection fluorescence microscopy have become valuable tools to discern how endogenous proteins control cell biology. Yet, some technical challenges remain; in SMT, these revolve around the characteristics of the labeling reagent. A good reagent should have neutrality (in terms of not affecting the target protein’s functions), tagging specificity, and a bright fluorescence signal. In addition, a long shelf-life is desirable due to the time and monetary costs associated with reagent preparation. Semiconductor-based quantum dots (Qdots) or Janelia Fluor (JF) dyes are bright and photostable, and are thus excellent candidates for SMT tagging. Neutral, high-affinity antibodies can selectively bind to target proteins. However, the bivalency of antibodies can cause simultaneous binding to two proteins, and this bridging effect can alter protein functions and behaviors. Bivalency can be avoided using monovalent Fab fragments generated by enzymatic digestion of neutral antibodies. However, conjugation of a Fab with a dye using the chemical cross-linking agent SMCC (succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate) requires reduction of the interchain disulfide bond within the Fab fragment, which can decrease the structural stability of the Fab and weaken its antigen-binding capability. To overcome this problem, we perform limited reduction of F(ab’)2 to generate Fab’ fragments using a weak reducer, cysteamine, which yields free sulfhydryl groups in the hinge region, while the interchain disulfide bond in Fab’ is intact. Here, we describe a method that generates Fab’ with high yield from two isoforms of IgG and conjugates the Fab’ fragments with Qdots. This conjugation scheme can be applied easily to other types of dyes with similar chemical characteristics.
Electroporation of Labeled Antibodies to Visualize Endogenous Proteins and Posttranslational Modifications in Living Metazoan Cell Types
利用标记抗体电穿孔来可视化研究后生动物活细胞中内源性蛋白和翻译后修饰
作者:Sascha Conic, Dominique Desplancq, László Tora and Etienne Weiss日期:11/05/2018,浏览量:4950,Q&A: 0
The spatiotemporal localization of different intracellular factors in real-time and their detection in live cells are important parameters to understand dynamic protein-based processes. Therefore, there is a demand to perform live-cell imaging and to measure endogenous protein dynamics in single cells. However, fluorescent labeling of endogenous protein in living cells without overexpression of fusion proteins or genetic tagging has not been routinely possible. Here we describe a versatile antibody-based imaging approach (VANIMA) to be able to precisely locate and track endogenous proteins in living cells. The labeling is achieved by the efficient and harmless delivery of fluorescent dye-conjugated antibodies or antibody fragments (Fabs) into living cells and the specific binding of these antibodies to the target protein inside of the cell. Our protocol describes step by step the procedure from testing of the suitability of the desired antibody, over the digestion of the antibody to Fabs until the labeling and the delivery by electroporation of the antibody or Fab into the cells. VANIMA can be adapted to any monoclonal antibody, self-produced or commercial, and many different metazoan cell lines. Additionally, our method is simple to implement and can be used not only to visualize and track endogenous factors, but also to specifically label posttranslational modifications, which cannot be achieved by any other labeling technique so far.
Identification of Insertion Site by RESDA-PCR in Chlamydomonas Mutants Generated by AphVIII Random Insertional Mutagenesis
在通过AphVIII随机插入诱变产生的衣藻突变体中采用RESDA-PCR鉴定插入位点
作者:Fantao Kong and Yonghua Li-Beisson日期:02/05/2018,浏览量:7371,Q&A: 0
Chlamydomonas reinhardtii is frequently used as a model organism to study fundamental processes in photosynthesis, metabolism, and flagellar biology. Versatile tool boxes have been developed for this alga (Fuhrmann et al., 1999; Schroda et al., 2000; Schroda, 2006). Among them, forward genetic approach has been intensively used, mostly because of the high efficiency in the generation of hundreds of thousands of mutants by random insertional mutagenesis and the haploid nature therefore phenotypic analysis can be done in the first generation (Cagnon et al., 2013; Tunçay et al., 2013). A major bottleneck in the application of high throughput methods in a forward genetic approach is the identification of the genetic lesion(s) responsible for the observed phenotype. In this protocol, we describe in detail an improved version of the restriction enzyme site-directed amplification PCR (RESDA-PCR) originally reported in (González-Ballester et al., 2005). The improvement includes optimization of primer combination, the choice of DNA polymerase, optimization of PCR cycle parameters, and application of direct sequencing of the PCR products. These modifications make it easier to get specific PCR products as well as speeding up subcloning steps to obtain sequencing data faster.
Automatic Leaf Epidermis Assessment Using Fourier Descriptors in Texture Images
在纹理图像中使用傅立叶描述符以进行自动叶表皮评估
The identification of plant species is not a trivial task, since it is carried out by experts and depends on the presence of fruits, flowers and leaves. However, fruits and flowers are not available throughout the year, while leaves are accessible most of the year. In order to assist the specialized work of species identification, methods of texture image analysis are used to extract characteristics from samples of imaged leaves and thus predict the species. Texture image analysis is a versatile and powerful technique able to extract measurements from patterns in the images. Using this technique, recent research has found a close relationship between texture and plant species (da Silva et al., 2015 and 2016). Here, we describe the procedure to extract texture features from microscopic images of leaves using Fourier (Cosgriff, 1960; Azencott, 1997; Gonzalez and Woods, 2006). It is important to highlight that other methods for texture extraction can be used as well.

This protocol is split into two parts: (A) leaf epidermal dissociation and (B) automatic method for leaf epidermal image analysis.