MS
Moritoshi Sato
  • Faculty, Department of Life Sciences, Graduate School of Arts and Sciences,, The University of Tokyo, Japan
研究方向
  • Biophysics, Cell Biology, Microbiology, Molecular Biology, Systems Biology
个人信息

教育背景

Ph.D., The University of Tokyo, 2001

实验室信息

http://satolab.c.u-tokyo.ac.jp

研究方向

Moritohi Sato is Professor of Chemistry and Chemical Biology at the University of Tokyo (UTokyo) and Project Leader at Kanagawa Institute of Industrial Science and Technology (KISTEC). He developed a blue light-dependent dimerization system, named Magnet system, as a core technology for optical manipulation of biomolecules in the cell. Using the Magnet system, he developed several tools for optical control of the genome, such as photoactivatable CRISPR-Cas9 system and photoactivatable Cre-loxP system. Additionally, he recently developed a red light-inducible dimerization system, named MagRed, for deep tissue optogenetics.

发表论文

https://scholar.google.co.jp/citations?hl=ja&user=L4MYHi8AAAAJ&view_op=list_works
[Selected publications]
[1] Y. Kuwasaki, K. Suzuki, G. Yu, S. Yamamoto, T. Otabe, Y. Kakihara, M. Nishiwaki, K. Miyake, K. Fushimi, R. Bekdash, Y. Shimizu, R. Narikawa, T. Nakajima, M. Yazawa and M. Sato, “A red light-responsive photoswitch for deep tissue optogenetics” Nature Biotechnology, 40, 1672-1679 (2022).
[2] Y. Koganezawa, M. Umetani, M. Sato and Y. Wakamoto, “History-dependent physiological adaptation to lethal genetic modification under antibiotic exposure” eLife, 11, e74486 (2022).
[3] T. Takao, M. Sato and T. Maruyama, “Optogenetic regulation of embryo implantation in mice using photoactivatable CRISPR–Cas9” Proceedings of the National Academy of Sciences of the United States of America, 117, 28579-28581 (2020).
[4] K. Morikawa, K. Furuhashi, C. de Sena-Tomas, A. L. Garcia-Garcia, R. Bekdash, A. D. Klein, N. Gallerani, H. E. Yamamoto, S.-H. E. Park, G. S. Collins, F. Kawano, M. Sato, C.-S. Lin, K. L. Targoff, E. Au, M. Salling and M. Yazawa, “Photoactivatable Cre recombinase 3.0 for in vivo mouse applications” Nature Communications, 11, 2141 (2020).
[5] Y. Nihongaki, T. Otabe, Y. Ueda and M. Sato, “A split CRISPR–Cpf1 platform for inducible genome editing and gene activation” Nature Chemical Biology, 15, 882-888 (2019).
[6] M. Tahara, Y. Takishima, S. Miyamoto, Y. Nakatsu, K. Someya, M. Sato, K. Tani and M. Takeda, “Photocontrollable mononegaviruses” Proceedings of the National Academy of Sciences of the United States of America, 116, 11587-11589 (2019).
[7] K. Fushimi, T. Miyazaki, Y. Kuwasaki, T. Nakajima, T. Yamamoto, K. Suzuki, Y. Ueda, K. Miyake, Y. Takeda, J.-H. Choi, H. Kawagishi, E. Y. Park, M. Ikeuchi, M. Sato and R. Narikawa, “Rational conversion of chromophore selectivity of cyanobacteriochromes to accept mammalian intrinsic biliverdin” Proceedings of the National Academy of Sciences of the United States of America, 116, 8301-8309 (2019).
[8] Y. Nihongaki, Y. Furuhata, T. Otabe, S. Hasegawa, K. Yoshimoto and M. Sato, “CRISPR–Cas9-based photoactivatable transcription systems to induce neuronal differentiation” Nature Methods, 14, 963-966 (2017).
[9] F. Kawano, R. Okazaki, M. Yazawa and M. Sato, “A photoactivatable Cre–loxP recombination system for optogenetic genome engineering” Nature Chemical Biology, 12, 1059-1064 (2016).
[10] Y. Nihongaki, F. Kawano, T. Nakajima and M. Sato, “Photoactivatable CRISPR–Cas9 for optogenetic genome editing” Nature Biotechnology, 33, 755-760 (2015).
[11] F. Kawano, H. Suzuki, A. Furuya and M. Sato, “Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins” Nature Communications, 6, 6256 (2015).
[12] T. Ozawa, Y. Natori, M. Sato and Y. Umezawa, “Imaging dynamics of endogenous mitochondrial RNA in single living cells” Nature Methods, 4, 413-419 (2007).
[13] M. Sato, Y. Ueda and Y. Umezawa, “Imaging diacylglycerol dynamics at organelle membranes” Nature Methods, 3, 797-799 (2006).
[14] M. Sato, N. Hida and Y. Umezawa, “Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells” Proceedings of the National Academy of Sciences of the United States of America, 102, 14515-14520 (2005).
[15] M. Sato, Y. Ueda, T. Takagi and Y. Umezawa, “Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis” Nature Cell Biology, 5, 1016-1022 (2003).
[16] T. Ozawa, Y. Sako, M. Sato, T. Kitamura and Y. Umezawa, “A genetic approach to identifying mitochondrial proteins” Nature Biotechnology, 21, 287-293 (2003).
[17] M. Sato, T. Ozawa, K. Inukai, T. Asano and Y. Umezawa, “Fluorescent indicators for imaging protein phosphorylation in single living cells” Nature Biotechnology, 20, 287-294 (2002).