细胞生物学


分类

现刊
往期刊物
0 Q&A 1288 Views Aug 20, 2025

This protocol describes an ex vivo co-culture method to assess CD8+ T-cell activation, proliferation, and cytotoxic potential using bulk splenocytes isolated from immunocompetent mice. Mouse splenocytes are stimulated with anti-CD3 and anti-CD28 antibodies to activate CD8+ T cells, which are then co-incubated with either cancer cells or cancer cell–derived conditioned media (CM) to evaluate tumor-driven modulation of immune cell functions. The use of unfractionated splenocytes preserves physiological cell–cell interactions, eliminating the need for exogenous interleukin (IL-2) and bypassing flow sorting, which simplifies the workflow and reduces experimental variability. CD8+ T-cell responses are measured via flow cytometry, using markers of proliferation (CFSE dilution), activation (CD69), and effector function (Granzyme B and IFNγ). Additionally, immune-mediated tumor cell death is evaluated by Annexin-V/7-AAD staining. Together, this experimental platform supports the investigation of both cell contact-dependent and contact-independent mechanisms of immune cell modulation in a cost-effective and reproducible setting.

0 Q&A 1083 Views Jul 20, 2025

The persistence of the HIV-1 reservoir remains the ultimate obstacle in achieving a cure. Cure strategies targeting the HIV-1 reservoir are under development, and therefore, finding ways to improve the detection of the reservoir is crucial. Several reservoir detection techniques exist to assess different markers of the HIV-1 reservoir, such as PCR-based assays and protein-based flow cytometric methods. We developed a flow cytometry-fluorescent in situ hybridization (flow-FISH) approach that assesses HIV-1 at the transcriptional level. Using a combination of probes that target either the HIV-1 trans-activation response (TAR) region and 5′ long terminal repeat (LTR) or the Gag sequence, our assay distinguishes between infected cells expressing abortive or elongated HIV-1 RNAs. This assay utilizes the branched-DNA method to amplify the fluorescent signal of the hybridized RNA probes and can be used directly for thawed or cultured cells, with the option to include surface antibody staining. Cellular expression of abortive and/or Gag HIV-1 RNAs is measured by flow cytometry. Our flow-FISH approach gives insight into the transcriptional dynamics of the HIV-1 reservoir and allows for the characterization of latently infected cells.

0 Q&A 1257 Views Jun 5, 2025

In vitro lymphocyte proliferation assays are essential for assessing immune responses and antiproliferative drug efficacy. Such assays rely on antigen presentation or mitogen stimulation, with performance determined by reagent concentration and incubation time. Although splenocytes are often used, peripheral blood mononuclear cells (PBMCs) offer more accessible and practical sampling. However, a streamlined protocol for porcine PBMCs proliferation with robust batch analysis has been lacking. We therefore developed a detailed workflow for inducing proliferation in cryopreserved porcine PBMCs using 5 μg/mL concanavalin A (ConA). The protocol covers cell isolation, cryopreservation, ConA stimulation, CD4+ T-cell staining, flow cytometry acquisition and gating on an Attune NxT instrument, and batch analysis with FCS ExpressTM 7.18. This approach yielded 78.9% viable cells, of which 33.8% were CD4+ lymphocytes. Moreover, 93.9% (n = 216) of cells proliferated, yielding up to nine cell generations. Batch analysis in FCS ExpressTM enhanced the accuracy and interpretation of proliferation metrics. This validated protocol provides a reliable framework for generating consistent proliferation data in porcine immunology studies.

0 Q&A 1508 Views Feb 20, 2025

In response to DNA-damaging physical or chemical agents, the DNA damage repair (DDR) pathway is activated in eukaryotic cells. In the radiobiology field, it is important to assess the DNA damage effect of a certain irradiation regime on cancer cells and compare it to the effect on non-transformed cells exposed to identical conditions. The first step in the DNA repair mechanism consists of the attachment of proteins such as the phosphorylated histone γ-H2AX (p-γ-H2AX) to DNA double-strand breaks (DSB) in the nucleus, which leads to the formation of repairing foci. Therefore, imaging methods were established to evaluate the presence of foci inside the nucleus after exposure to DNA-damaging agents. This approach is superior in sensitivity to other methods, such as the comet assay or the pulsed-field gel electrophoresis (PFGE), that allow direct detection of cleaved DNA fragments. These electrophoresis-based methods require high ionizing radiation dosages and are difficult to reproduce compared to imaging-based assays. Conventionally, the number of foci is determined visually, with limited accuracy and throughput. Here, by exploring the effect of laser-plasma accelerated electrons FLASH irradiation on cancer cells, we describe an image cytometry protocol for the quantification of foci with increased throughput, upon large areas, with increased precision and sample-to-sample consistency. It consists of the automatic scanning of fluorescently labeled cells and using a gating strategy similar to flow cytometry to discriminate cells in co-culture based on nuclei elongation properties, followed by automatic quantification of foci number and statistical analysis. The protocol can be used to monitor the kinetics of DNA repair by quantification of p-γ-H2AX at different time points post-exposure or by quantification of other DNA repair proteins that form foci at the DNA DSB sites. Also, the protocol can be used for quantifying the response to chemical agents targeting DNA. This protocol can be performed on any type of cancer cells, and our gating strategy to discriminate cells in co-culture can also be used in other research applications.

0 Q&A 2069 Views Jan 20, 2025

Protein synthesis is by far the most energetically costly cellular process in rapidly dividing cells. Quantifying translating ribosomes in individual cells and their average mRNA transit rate is arduous. Quantitating assembled ribosomes in individual cells requires electron microscopy and does not indicate ribosome translation status. Measurement of average transit rates entails in vitro pulse-chase radiolabeling of isolated cells or ribosome profiling after ribosome runoff, which is expensive and extremely demanding technically. Here, we detail protocols based on ribosome-mediated nascent chain puromycylation, harringtonine to stall initiating ribosomes while allowing ribosome elongation to continue normally, and cycloheximide to freeze translating ribosomes in place. Each compound is delivered intravenously to mice in the appropriate order, and after ex vivo cell fixation and permeabilization, translating ribosome numbers and transit rates are measured by flow cytometry using a directly conjugated puromycin-specific antibody.

0 Q&A 1356 Views Jul 5, 2024

Adult mammals lack the ability to regenerate retinal neurons after injury. However, in previous studies from this lab, topical application of the selective alpha7 nicotinic acetylcholine receptor (nAChR) agonist, PNU-282987, has been associated with an increase in the number of retinal neurons in adult murine models both in the presence and absence of injury to the retina. Additionally, studies assaying mitotic markers have shown a substantial increase in the amount of mitotically active and proliferating cells with the topical application of the alpha7 nAChR agonist. However, these previous studies were performed using fluorescent immunolabeling and subsequent confocal microscopy, thus limiting the number of antibodies that can be multiplexed. As a result, we have developed a flow cytometry method that allows for the multiplexing and analysis of multiple external and internal markers in dissociated retinal cells. In this paper, a step-by-step protocol is described for the labeling of multiple retinal cell types such as retinal ganglion cells, rod photoreceptors, and Müller glia, concurrently with Müller glia–derived progenitor cells that arise after treatment with PNU-282987.

1 Q&A 2027 Views Jun 20, 2024

Microglia, the brain's primary resident immune cell, exists in various phenotypic states depending on intrinsic and extrinsic signaling. Distinguishing between these phenotypes can offer valuable biological insights into neurodevelopmental and neurodegenerative processes. Recent advances in single-cell transcriptomic profiling have allowed for increased granularity and better separation of distinct microglial states. While techniques such as immunofluorescence and single-cell RNA sequencing (scRNA-seq) are available to differentiate microglial phenotypes and functions, these methods present notable limitations, including challenging quantification methods, high cost, and advanced analytical techniques. This protocol addresses these limitations by presenting an optimized cell preparation procedure that prevents ex vivo activation and a flow cytometry panel to distinguish four distinct microglial states from murine brain tissue. Following cell preparation, fluorescent antibodies were applied to label 1) homeostatic, 2) disease-associated (DAM), 3) interferon response (IRM), and 4) lipid-droplet accumulating (LDAM) microglia, based on gene markers identified in previous scRNA-seq studies. Stained cells were analyzed by flow cytometry to assess phenotypic distribution as a function of age and sex. A key advantage of this procedure is its adaptability, allowing the panel provided to be enhanced using additional markers with an appropriate cell analyzer (i.e., Cytek Aurora 5 laser spectral flow cytometer) and interrogating different brain regions or disease models. Additionally, this protocol does not require microglial cell sorting, resulting in a relatively quick and straightforward experiment. Ultimately, this protocol can compare the distribution of microglial phenotypic states between various experimental groups, such as disease state or age, with a lower cost and higher throughput than scRNA-seq.

0 Q&A 1201 Views Jun 5, 2024

Extracellular vesicles (EVs) are a heterogeneous group of nanoparticles possessing a lipid bilayer membrane that plays a significant role in intercellular communication by transferring their cargoes, consisting of peptides, proteins, fatty acids, DNA, and RNA, to receiver cells. Isolation of EVs is cumbersome and time-consuming due to their nano size and the co-isolation of small molecules along with EVs. This is why current protocols for the isolation of EVs are unable to provide high purity. So far, studies have focused on EVs derived from cell supernatants or body fluids but are associated with a number of limitations. Cell lines with a high passage number cannot be considered as representative of the original cell type, and EVs isolated from those can present distinct properties and characteristics. Additionally, cultured cells only have a single cell type and do not possess any cellular interactions with other types of cells, which normally exist in the tissue microenvironment. Therefore, studies involving the direct EVs isolation from whole tissues can provide a better understanding of intercellular communication in vivo. This underscores the critical need to standardize and optimize protocols for isolating and characterizing EVs from tissues. We have developed a differential centrifugation-based technique to isolate and characterize EVs from whole adipose tissue, which can be potentially applied to other types of tissues. This may help us to better understand the role of EVs in the tissue microenvironment in both diseased and normal conditions.

0 Q&A 1282 Views May 5, 2024

Plasma membrane proteins mediate important aspects of physiology, including nutrient acquisition, cell–cell interactions, and monitoring homeostasis. The trafficking of these proteins, involving internalisation from and/or recycling back to the cell surface, is often critical to their functions. These processes can vary among different proteins and cell types and states and are still being elucidated. Current strategies to measure surface protein internalisation and recycling are typically microscopy or biochemical assays; these are accurate but generally limited to analysing a homogenous cell population and are often low throughput. Here, we present flow cytometry–based methods involving probe-conjugated antibodies that enable quantification of internalisation or recycling rates at the single-cell level in complex samples. To measure internalisation, we detail an assay where the protein of interest is labelled with a specific antibody conjugated to a fluorescent oligonucleotide-labelled probe. To measure recycling, a specific antibody conjugated to a cleavable biotin group is employed. These probes permit the differentiation of molecules that have been internalised or recycled from those that have not. When combined with cell-specific marker panels, these methods allow the quantitative study of plasma membrane protein trafficking dynamics in a heterogenous cell mixture at the single-cell level.

0 Q&A 3732 Views Dec 20, 2023

Clearance of dying cells, named efferocytosis, is a pivotal function of professional phagocytes that impedes the accumulation of cell debris. Efferocytosis can be experimentally assessed by differentially tagging the target cells and professional phagocytes and analyzing by cell imaging or flow cytometry. Here, we describe an assay to evaluate the uptake of apoptotic cells (ACs) by human macrophages in vitro by labeling the different cells with commercially available dyes and analysis by flow cytometry. We detail the methods to prepare and label human macrophages and apoptotic lymphocytes and the in vitro approach to determine AC uptake. This protocol is based on previously published literature and allows for in vitro modeling of the efficiency of AC engulfment during continual efferocytosis process. Also, it can be modified to evaluate the clearance of different cell types by diverse professional phagocytes.


Graphical overview