细胞生物学


分类

现刊
往期刊物
0 Q&A 1990 Views Feb 5, 2022

Hydrogen peroxide (H2O2) is a toxic oxidant produced as a byproduct of several biological processes. At too high levels of hydrogen peroxide cells will experience oxidative stress, leading to a cellular response to decrease its levels and to protect the cells. Previously, methods used to study and quantify intracellular H2O2 have been limited by both sensitivity and specificity. However, an increasing number of genetically encoded fluorescent indicators (GEFIs) are becoming available, which can specifically detect low levels of intracellular hydrogen peroxide. In this study, we use such a biosensor designed to monitor cytosolic H2O2 levels in the budding yeast Saccharomyces cerevisiae during continuous cultivation and in the absence of a fluorescence microscope. The fluorescent biosensor contains a peroxiredoxin protein fused to an engineered GFP molecule expressed from a commonly used yeast plasmid (pRS416-TEF1). The peroxiredoxin-based fluorescent indicator reduces H2O2, ultimately resulting in a GFP signal being emitted by the sensor. Here, we apply this biosensor to study cytosolic H2O2 levels in S. cerevisiae strains with and without recombinant protein production.


Graphic abstract:



Schematic overview of experimental steps.


0 Q&A 2354 Views Jan 5, 2022

Pulmonary hypertension (PH) is a heterogenous and incurable disease marked by varying degrees of pulmonary vascular remodeling. This vascular remodeling, which includes thickening of the smooth muscle layer (an early finding) and formation of occlusive neointimal lesions (a late finding) in the pulmonary arteries, is a major driver of morbidity and mortality in PH. Available PH therapies consist of vasodilators that do not specifically target lesion formation or expansion and neither prevent progression nor reverse disease. This paucity of curative treatments highlights the need for new drug discovery targeting crucial steps of artery remodeling in PH. The cell dynamics and molecular signals driving neointimal lesion formation have been difficult to elucidate as classic mouse models of PH do not develop neointima. Here, we detail the methods to generate a robust and non-genetic mouse model of PH with medial thickening and neointimal lesion formation in the pulmonary arteries, through chronic exposure to an inflammatory stimulus—house dust mite (HDM). This model rapidly generates human-like pulmonary arterial lesions following a reproducible time course, allowing scrutiny of the cellular and molecular mechanisms controlling each stage of artery remodeling. Further, we outline optimal tissue handling, sectioning, and staining methodologies for detailed quantitative analysis of artery medial thickening and neointimal lesion formation and expansion. Finally, we present a method for staged pharmacologic intervention to identify molecules and pathways required at each step of the pulmonary arterial remodeling process. The advantages of this mouse model of PH over currently available animal models are five-fold. (i) It allows the use of the full range of genetic and single cell tools available in mice to manipulate and study the process of vascular remodeling seen in human disease, including the formation of neointimal lesions in a controlled and cell specific manner. (ii) The vascular lesions develop in a stereotyped manner with predictable timing, allowing for pharmacologic manipulation at discrete stages of vessel remodeling. (iii) It is rapid, with development of PH and vascular remodeling in a timeframe of two to eight weeks. (iv) It uses simple techniques and requires neither surgery, unusual equipment, or extensive personnel training. (v) The staining and quantitation methodologies we present are a significant improvement over those currently in use in the field. We hope that dissemination of this model and the associated detailed methods will speed up the development of novel and more effective PH therapeutics.


Graphic abstract:



Chronic perivascular inflammation induces medial thickening and neointima formation in pulmonary arteries, following a stereotyped time course, and allowing staged pharmacologic intervention during specific remodeling events, as well as quantitative assessment of vascular changes.


0 Q&A 3931 Views Mar 5, 2020
Plant-insect interaction is an important field for studying plant immunity. The beet armyworm, Spodoptera exigua, is one of the best-known agricultural pest insects and is usually used to study plant interactions with chewing insects. Here, we describe a protocol for insect feeding assays with Spodoptera exigua lavae using model host plant Arabidopsis thaliana, which is simple and easy to conduct, and can be used to evaluate the effect of host genes on insect growth and thus to study plant resistance to chewing insects.
0 Q&A 5157 Views Dec 5, 2018
Various environmental stresses or artificial reagents can trigger unfolded protein accumulation in the endoplasmic reticulum (ER) due to the folding capacity of the ER being exceeded. This is termed ER stress, and triggers the unfolded protein response (UPR). Assays for activation of the UPR in plants include Tunicamycin (Tm)- or dithiothreitol (DTT)-mediated root growth inhibition, analysis of splicing of the UPR-responsive transcription factor bZIP60 (basic Leucine Zipper Domain 60), and upregulation of relevant UPR genes. We provide here a quick and robust method to detect UPR signaling in Arabidopsis thaliana protoplasts. This assay can also be applied to other plant species for which protoplasts can be isolated.
3 Q&A 21103 Views Jul 5, 2017
Glutathione is an important molecule involved in the primary and secondary metabolism of all organisms. The Glutathione redox status is an indicator of the cellular redox state. Therefore, it is important to have precise methods on hand to determine the glutathione redox status in the cell. In this protocol, we describe an improved spectrophotometric method to estimate the content of reduced (GSH) and oxidized (GSSG) forms of glutathione in the extremophilic microalga Galdieria phlegrea.
0 Q&A 12771 Views Jan 20, 2017
Eukaryotic cells contain various types of cytoplasmic, non-membrane bound ribonucleoprotein (RNP) granules that consist of non-translating mRNAs and a versatile set of associated proteins. One prominent type of RNP granules is Processing bodies (P bodies), which majorly harbors translationally inactive mRNAs and an array of proteins mediating mRNA degradation, translational repression and cellular mRNA transport (Sheth and Parker, 2003). Another type of RNP granules, the stress granules (SGs), majorly contain mRNAs associated with translation initiation factors and are formed upon stress-induced translational stalling (Kedersha et al., 2000 and 1999). Multiple evidence obtained from studies in unicellular organisms supports a model in which P bodies and SGs physically interact during cellular stress to direct mRNAs for transport, decay, temporal storage or reentry into translation (Anderson and Kedersha, 2008; Decker and Parker, 2012). The quantification, distribution and colocalization of P bodies and/or SGs are essential tools to study the composition of RNP granules and their contribution to fundamental cellular processes, such as stress response and translational regulation. In this protocol we describe a method to quantify P bodies and SGs in somatic tissues of the nematode Caenorhabditis elegans.
0 Q&A 7688 Views Jan 5, 2017
Activation of the aryl hydrocarbon receptor (AHR) by endogenous ligands has been implicated in a variety of physiological processes such as cell cycle regulation, cell differentiation and immune responses. It is reported that tryptophan metabolites, such as kynurenine (Kyn) and 6-formylindolo(3,2-b)carbazole (FICZ), are endogenous ligands for AHR (Stockinger et al., 2014). This protocol is designed for treatment with Kyn or FICZ in mouse embryonic fibroblasts (MEFs) or primary peripheral monocytes.
0 Q&A 8000 Views Jan 5, 2017
The aryl hydrocarbon receptor (AHR) is known as a sensor for dioxins that mediates their toxicity, and also has important biophysiological roles such as circadian rhythms, cell differentiation and immune responses. 6-formylindolo(3,2-b)carbazole (FICZ), which is derived through the metabolism of L-tryptophan by ultraviolet B irradiation, is one of putative physiological ligands for AHR (Smirnova et al., 2016). It has recently been shown that endogenously-activated AHR signaling modulates innate immune response during viral infection (Yamada et al., 2016). This section describes how to treat mice with FICZ and to infect them with virus.
0 Q&A 9825 Views Oct 5, 2016
Bacterial lipopolysaccharide (LPS) is present in the outer membrane of Gram-negative bacteria and functions as pathogen-associated molecular pattern (PAMP) (Whitfield and Trent, 2014). LPS therefore is a potent activator of inflammatory responses leading to cytokine release and neutrophils recruitment. The lipid A moiety of LPS activates the complex consisting of the LPS binding protein (LBP), CD14, MD-2 and Toll-like receptor 4 (TLR4) and the non-canonical inflammasome-linked caspases-4, 5 and 11, which in turn activate the canonical NLRP3 inflammasome (Shi et al., 2014; Hagar et al., 2013; Kayagaki et al., 2013; Hoshino et al., 1999; Poltorak, 1998; Nagai et al., 2002; Park et al., 2009; Ratsimandresy et al., 2013). In particular, the cytokine interleukin (IL)-1β produced in response to inflammasome activation has a crucial role in neutrophil recruitment through promoting neutrophil adhesion and migration (McDonald et al., 2010).This protocol allows studying of inflammatory response induced by LPS that affect neutrophil infiltration by tracking myeloperoxidase (MPO) activity in vivo (de Almeida et al., 2015).
0 Q&A 6237 Views Oct 5, 2016
In response to pathogen infection and tissue damage, inflammasome sensors such as NLRP3 and AIM2 are activated, which triggers PYRIN domain (PYD)-mediated ASC nucleation, followed by self-perpetuating ASC polymerization, which ultimately culminates in caspase-1 activation, interleukin (IL)-1β and IL-18 processing and release and pyroptosis (Ratsimandresy et al., 2013; Cai et al., 2014). Inflammasomes release not only cytokines, but also the polymeric ASC danger particles (pASC) by pyroptosis, which perpetuate and propagate inflammasome responses to bystander cells to engage cell intrinsic ASC and caspase-1 (Baroja-Mazo et al., 2014; Franklin et al., 2014). In this protocol we describe intraperitoneal injection of polymeric ASC particles as a danger signal and measure neutrophil infiltration and levels of the pro-inflammatory cytokine IL-1β by ELISA in the peritoneal lavage (de Almeida et al., 2015).