植物科学


分类

现刊
往期刊物
0 Q&A 746 Views Sep 20, 2022

Weeds compete with crops for growth resources, causing tremendous yield losses. Paraquat is one of the three most common non-selective herbicides. To study the mechanisms of paraquat resistance, we need to trace the movement of paraquat in plants and within the cell. 14C is a radioactive carbon isotope widely used to trace substances of interest in various biological studies, especially in transport analyses. Here, we describe a detailed protocol using 14C-paraquat to demonstrate paraquat efflux in Arabidopsis protoplasts.

1 Q&A 2515 Views Jan 20, 2022

Rhizoctonia solani is a soil-borne fungus, which rarely produces any spores in culture. Hence, all inoculation procedures are based on mycelia, often as a coat on cereal kernels, placed in close vicinity to the plant to be infected. In this protocol, an inoculation method is described where the fungus is first allowed to infest a perlite-maize flour substrate for 10 days, followed by thorough soil mixing to generate uniform fungal distribution. Pre-grown seedlings are then replanted in the infested soil. Plant materials can be harvested, five (sugar beet) and ten days (Arabidopsis) post infection, followed by a rapid cleaning step ahead of any nucleic acid preparation. Commercial DNA or RNA extraction kits can be used or, if higher DNA yield is required, a CTAB extraction method. Our purpose was to develop a reliable and reproducible protocol to determine the infection levels in planta upon infection with R. solani. This protocol is less laborious compared to previous ones, improves the consistency of plant infection, reproducibility between experiments, and suits both a root crop and Arabidopsis.



Graphic abstract:



Overview of the R. solani infection procedure.


0 Q&A 1756 Views Oct 20, 2021

Defense priming describes the enhanced potency of cells to activate defense responses. Priming accompanies local and systemic immune responses and can be triggered by microbial infection or upon treatment with certain chemicals. Thus, chemically activating defense priming is promising for biomedicine and agriculture. However, test systems for spotting priming-inducing chemicals are rare. Here, we describe a high-throughput screen for compounds that prime microbial pattern-spurred secretion of antimicrobial furanocoumarins in parsley culture cells. For the best possible throughput, we perform the assay with 1-ml aliquots of cell culture in 24-well microtiter plates. The advantages of the non-invasive test over competitive assays are its simplicity, remarkable reliability, and high sensitivity, which is based on furanocoumarin fluorescence in UV light.

0 Q&A 2353 Views Aug 20, 2021

Ralstonia solanacearum is a soil-borne pathogen with worldwide distribution that causes bacterial wilt disease in more than 250 plant species. R. solanacearum invades plants through the roots, reaches the vascular system, and colonizes the whole plant by moving through the xylem, where it eventually replicates rapidly, causing plant death. Usual assays to measure the virulence of R. solanacearum under laboratory conditions rely on soil-drenching inoculation followed by observation and scoring of disease symptoms. Here, we describe a protocol to assess the replication of R. solanacearum following injection into tomato stems. This protocol includes four major steps: 1) growth of tomato plants; 2) R. solanacearum injection into tomato stems; 3) collection of tomato xylem samples and bacterial quantitation; and 4) data analysis and representation. This method bypasses the natural penetration process of the pathogen, thus minimizing variation associated with stochastic events during bacterial invasion, and provides a sensitive and accurate measurement of bacterial fitness inside xylem vessels.

0 Q&A 3072 Views Aug 5, 2021

Ralstonia solanacearum is a devastating soil-borne bacterial pathogen that causes disease in multiple host plants worldwide. Typical assays to measure virulence of R. solanacearum in laboratory conditions rely on soil-drenching inoculation followed by observation and scoring of disease symptoms. Here, we describe a novel inoculation protocol to analyze the replication of R. solanacearum upon infiltration into the leaves of Nicotiana benthamiana, in which gene expression has been altered using Agrobacterium tumefaciens. The protocol includes five major steps: 1) growth of N. benthamiana plants; 2) infiltration of A. tumefaciens; 3) R. solanacearum inoculation; 4) sample collection and bacterial quantitation; 5) data analysis and representation. The transient gene expression or gene silencing prior to R. solanacearum inoculation provides a straightforward way to perform genetic analysis of plant functions involved in the interaction between pathogen and host, using the appropriate combination of A. tumefaciens and R. solanacearum strains, with high sensitivity and accuracy provided by the quantitation of bacterial numbers in plant tissues.

0 Q&A 3280 Views Jul 5, 2021

Soluble sugars play key roles in plant growth, development, and adaption to the environment. Characterizing sugar content profiling of plant tissues promotes our understanding of the mechanisms underlying these plant processes. Several technologies have been developed to quantitate soluble sugar content in plant tissues; however, it is difficult with only minute quantities of plant tissues available. Here, we provide a detailed protocol for gas chromatography mass spectrometry (GC-MS)-based soluble sugar profiling of rice tissues that offers a good balance of sensitivity and reliability, and is considerably more sensitive and accurate than other reported methods. We summarize all the steps from sample collection and soluble sugar extraction to derivatization procedures of the soluble extracted sugars, instrumentation settings, and data analysis.

0 Q&A 2796 Views Dec 5, 2020

Pipecolic acid (Pip), a non-proteinacious product of lysine catabolism, is an important regulator of immunity in plants and humans alike. For instance, Pip accumulation is associated with the genetic disorder Zellweger syndrome, chronic liver diseases, and pyridoxine-dependent epilepsy in humans. In plants, Pip accumulates upon pathogen infection and is required for plant defense. The aminotransferase ALD1 catalyzes biosynthesis of Pip precursor piperideine-2-carboxylic acid, which is converted to Pip via ornithine cyclodeaminase. A variety of methods are used to quantify Pip, and some of these involve use of expensive amino acid analysis kits. Here, we describe a simplified procedure for quantitative analysis of Pip from plant tissues. Pipecolic acid was extracted from leaf tissues along with an internal standard norvaline, derivatized with propyl chloroformate and analyzed by gas chromatography-coupled mass spectrometry using selective ion mode. This procedure is simple, economical, and efficient and does not involve isotopic internal standards or multiple-step derivatizations.

0 Q&A 3931 Views Mar 5, 2020
Plant-insect interaction is an important field for studying plant immunity. The beet armyworm, Spodoptera exigua, is one of the best-known agricultural pest insects and is usually used to study plant interactions with chewing insects. Here, we describe a protocol for insect feeding assays with Spodoptera exigua lavae using model host plant Arabidopsis thaliana, which is simple and easy to conduct, and can be used to evaluate the effect of host genes on insect growth and thus to study plant resistance to chewing insects.
0 Q&A 5822 Views Apr 20, 2019
Soil organisms are diverse taxonomically and functionally. This ecosystem experiences highly complex networks of interactions, but may also present functionally independent entities. Plant roots, a metabolically active hotspot in the soil, take an essential part in shaping the rhizosphere. Tracking the dynamics of root-microbe interactions at high spatial resolution is currently limited due to methodological intricacy. In this study, we developed a novel microfluidics-based device enabling direct imaging of root-bacteria interactions in real time.
0 Q&A 4761 Views Apr 5, 2019
We describe a protocol to measure the contribution of humidity on cell death during the effector-triggered immunity (ETI), the plant immune response triggered by the recognition of pathogen effectors by plant resistance genes. This protocol quantifies tissue cell death by measuring ion leakage due to loss of membrane integrity during the hypersensitive response (HR), the ETI-associated cell death. The method is simple and short enough to handle many biological replicates, which improves the power of test of statistical significance. The protocol is easily applicable to other environmental cues, such as light and temperature, or treatment with chemicals.