生物科学


分类

现刊
0 Q&A 181 Views Mar 5, 2025

Extracellular vesicles (EVs) are membrane-bound, non-replicating particles released by virtually all types of cells. EVs concentrate and deliver a plethora of biomolecules driving very important biological functions, including intercellular communication not only between cells of the same organism but also across different kingdoms. Plant extracellular vesicles (PEVs) are a promising alternative to mammalian EVs in biomedical applications. Here, we present an optimized and reproducible protocol for isolating PEVs from the hairy root (HR) cultures of medicinal plants Salvia dominica and S. sclarea. Our methodological approach introduces a significant advancement in the standardization of HR-EVs purification processes from plant biotechnological platforms, paving the way for their broader application across various sectors, including agriculture, pharmaceuticals, and nutraceuticals.

0 Q&A 298 Views Mar 5, 2025

The adeno-associated virus serotype 9 (AAV9)-delivered gene expression driven by the cardiac troponin T (Tnnt2) promoter is broadly considered to be cardiac-specific. However, in cases where low AAV expression is sufficient to trigger a profound biological effect in CRISPR/Cas9 gene editing, the ectopic AAV9-Tnnt2 expression and gene editing in the liver becomes non-negligible. MicroRNA122 is a microRNA that is specifically expressed in the liver. The incorporation of the microRNA122 target sequence (miR122TS) into the 3' untranslated region (UTR) of the AAV transgene could reduce ectopic gene expression in the liver. Here, we provide a protocol for sgRNA design, plasmid construction, AAV packaging, and in vivo validation of a new AAV9-Tnnt2-SaCas9-miR122TS vector using publicly available materials and tools. The application of this new vector enables cardiac-specific gene editing while circumventing leakages in the liver.

往期刊物
0 Q&A 216 Views Feb 20, 2025

Chemotaxis refers to the ability of organisms to detect chemical gradients and bias their motion accordingly. Quantifying this bias is critical for many applications and requires a device that can generate and maintain a constant concentration field over a long period allowing for the observation of bacterial responses. In 2010, a method was introduced that combines microfluidics and hydrogel to facilitate the diffusion of chemical species and to set a linear gradient in a bacterial suspension in the absence of liquid flow. The device consists of three closely parallel channels, with the two outermost channels containing chemical species at varying concentrations, forming a uniform, stationary, and controlled gradient between them. Bacteria positioned in the central channel respond to this gradient by accumulating toward the high chemoattractant concentrations. Video-imaging of bacteria in fluorescent microscopy followed by trajectory analysis provide access to the key diffusive and chemotactic parameters of motility for the studied bacterial species. This technique offers a significant advantage over other microfluidic techniques as it enables observations in a stationary gradient. Here, we outline a modified and improved protocol that allows for the renewal of the bacterial population, modification of the chemical environment, and the performance of new measurements using the same chip. To demonstrate its efficacy, the protocol was used to measure the response of a strain of Escherichia coli to gradients of α-methyl-aspartate across the entire response range of the bacteria and for different gradients.

0 Q&A 383 Views Feb 20, 2025

CRISPR/Cas9 genome editing technology has revolutionized plant breeding by offering precise and rapid modifications. Traditional breeding methods are often slow and imprecise, whereas CRISPR/Cas9 allows for targeted genetic improvements. Previously, direct delivery of Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes to grapevine (Vitis vinifera) protoplasts has been demonstrated, but successful regeneration of edited protoplasts into whole plants has not been achieved. Here, we describe an efficient protocol for obtaining transgene/DNA-free edited grapevine plants by transfecting protoplasts isolated from embryogenic callus and subsequently regenerating them. The regenerated edited plants were comparable in morphology and growth habit to wild-type controls. This protocol provides a highly efficient method for DNA-free genome editing in grapevine, addressing regulatory concerns and potentially facilitating the genetic improvement of grapevine and other woody crop plants.

0 Q&A 134 Views Feb 20, 2025

To prepare Hevea brasiliensis plantations, selected planting material is propagated by grafting using illegitimate seedlings as rootstocks, whose paternal genotype is unknown. Recent advances in rubber tree in vitro cloning propagation open the possibility of using these techniques to supply new planting material. Micrografting is a promising technique to speed up the preparation of plant material for rootstock–scion interaction studies. This article describes the implementation of an efficient micrografting technique from Hevea in vitro plants from clone PB 260. The procedure combines several conditions to preserve the root system and the grafted scion and to prevent any breakage of rootstock buds. This technique paves the way for clonal propagation and holds potential for further development on other rubber clones for further studies on the interaction between rootstock and scion.

0 Q&A 1661 Views Jan 20, 2025

Pulpitis is an important and prevalent disease within the oral cavity. Thus, animal models are necessary tools for basic research focused on pulpitis. Researchers worldwide often use dogs and miniature pigs to construct animal models of pulpitis. However, gene editing in miniature pigs is difficult, the surgical modeling process is complex, and tooth demineralization time is lengthy. Although some researchers have attempted to establish a mouse model of pulpitis, most models have involved direct exposure of dental pulp. However, the causes of pulpitis vary considerably among individuals, hindering effective research. In this study, we established a mouse model of pulpitis by accessing the pulp cavity, exposing the pulp to lipopolysaccharide (LPS), and then filling the tooth. One day after surgery, we observed many necrotic tissues and extensive inflammatory exudate, including neutrophils, around the coronal cavity preparation. Additionally, we noted many more neutrophils and a small amount of chronic inflammatory cell infiltrates at the junction between inflamed and normal tissue. These findings indicated that our model can be used to explore the early stage of pulpitis. Ten days after surgery, we observed vacuolar degeneration in some fibroblasts and proliferation in others at the distal end of the inflamed tissue. We also noted dilation and congestion of the pulp blood vessels. Therefore, our model can also be used to explore the middle and later stages of pulpitis. Thirty days after surgery, we observed necrosis in the coronal pulp cavity and upper half of the root pulp, indicating that our model can also be used to explore the end stage of pulpitis. This model is easy to establish, shows pulpitis progression in the dental pulp, exhibits a clear inflammatory phenotype, and can be readily combined with gene editing techniques. Accordingly, it is suitable for basic research focused on pulpitis and has substantial practical value.

0 Q&A 552 Views Jan 5, 2025

Candida auris, labeled an urgent threat by the CDC, shows significant resilience to treatments and disinfectants via biofilm formation, complicating treatment/disease management. The inconsistencies in biofilm architecture observed across studies hinder the understanding of its role in pathogenesis. Our novel in vitro technique cultivates C. auris biofilms on gelatin-coated coverslips, reliably producing multilayer biofilms with extracellular polymeric substances (EPS). This method, applicable to other Candida species like C. glabrata and C. albicans, is cost-effective and mimics the niche of biofilm formation. It is suitable for high-throughput drug screening and repurposing efforts, aiding in the development of new therapeutics. Our technique represents a significant advancement in Candida biofilm research, addressing the need for consistent, reproducible biofilm models. We detail a step-by-step procedure for creating a substratum for biofilm growth and measuring biofilm thickness using confocal laser scanning microscopy (CLSM) and ultrastructure by scanning electron microscopy (SEM). This method provides consistent outcomes across various Candida species.

0 Q&A 420 Views Jan 5, 2025

Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method’s robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology. It enables the introduction of foreign DNA into plant genomes. Conventionally, plant genetic transformation has relied on time-consuming, costly, and technically demanding procedures, such as electroporation and chimeric viruses or biolistic methods, which usually yield variable transformation efficiencies. This study presents a simple and fail-safe protocol that involves a modified freeze-thaw and heat-shock concoction method. This approach involves a streamlined plasmid miniprep procedure to isolate high-quality plasmid DNA from Escherichia coli K12 strain, followed by a target-specific transfer into A. tumefaciens EHA105 strain. The optimized method minimizes DNA degradation and maximizes uptake by Agrobacterium cells, making it a reproducible and accessible protocol for various genetic engineering applications. The transformation efficiency is consistently high, enhancing plasmid uptake while maintaining cell viability, requiring minimal specialized equipment and reagents. The proposed protocol offers significant advantages, including simplicity, reliability, and cost-effectiveness, positioning it as a valuable alternative to traditional techniques in the field of plant biotechnology.

0 Q&A 892 Views Dec 20, 2024

The advent of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing has marked a significant advancement in genetic engineering technology. However, the editing of induced pluripotent stem cells (iPSCs) with CRISPR presents notable challenges in ensuring cell survival and achieving high editing efficiency. These challenges become even more complex when considering the specific target site. P53 activation as a result of traditional CRISPR editing can lead to apoptosis, potentially worsening cell health or even resulting in cell death. Mitigating this apoptotic response can enhance cell survival post-CRISPR editing, which will ultimately increase editing efficiency. In our study, we observed that combining p53 inhibition with pro-survival small molecules yields a homologous recombination rate of over 90% when using CRISPR in human iPSCs. This protocol significantly streamlines the editing process and reduces the time and resources necessary for creating isogenic lines.

0 Q&A 1789 Views Dec 20, 2024

Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results. Consequently, providing researchers with accessible and cost-effective phenotype analysis methods is crucial. A prevalent technique for investigating calcified bone development in these species involves using transgenic fish that express fluorescent proteins labeling calcified bones; however, acquiring these fish and isolating appropriate crosses can be time-consuming. We present a comprehensive protocol for visualizing ossified bones in zebrafish and medaka larvae and juveniles using calcein and alizarin red S staining, which is both economical and efficient. This method, applicable to live specimens during the ossification of bones, avoids apparent alterations in skeletal morphology and allows for the use of different fluorescent dyes in conjunction with transgenic labeling, thus enhancing the analysis of developmental processes in calcifying bones, such as vertebrae and fin rays.

0 Q&A 1730 Views Dec 5, 2024

Droplet microfluidic platforms have been broadly used to facilitate DNA transfer in mammalian and bacterial hosts via methods such as transformation, transfection, and conjugation, as introduced in our previous work. Herein, we recapitulate our method for conjugal DNA transfer between Bacillus subtilis strains in a droplet for increased conjugation efficiency and throughput of an otherwise laborious protocol. By co-incubating the donor and recipient strains in droplets, our method confines cells into close proximity allowing for increased cell-to-cell interactions. This methodology is advantageous in its potential to automate and accelerate the genetic modification of undomesticated organisms that may be difficult to cultivate. This device is also designed for modularity and can be integrated into a variety of experimental workflows in which fine-tuning of donor-to-recipient cell ratios, growth rates, and media substrate concentrations may be necessary.

0 Q&A 330 Views Nov 5, 2024

Maternal mRNAs and proteins are produced during oogenesis by more than 60% of zebrafish genes. They are indispensable for fertilization and early embryogenesis. Generation and analysis of the maternal mutant is the most direct way to characterize the maternal function of the specific gene. However, due to the lethality of zygotic mutants, the maternal function of most genes in zebrafish remains elusive. Several methods have been developed to circumvent this obstacle, including mRNA rescue, germ-line replacement, oocyte microinjection in situ, mosaic mutation, and bacterial artificial chromosome (BAC)-mediated conditional rescue. Here, we provide an alternative approach to generate zebrafish maternal mutants rapidly and efficiently by introducing four tandem sgRNA expression cassettes into Tg(zpc:zcas9) embryos. This method is more technically feasible and cost- and time-effective than other established methods.