生物科学


分类

现刊
往期刊物
0 Q&A 440 Views Jan 5, 2024

Toxoplasma gondii is a zoonotic protozoan parasite and one of the most successful foodborne pathogens. Upon infection and dissemination, the parasites convert into the persisting, chronic form called bradyzoites, which reside within cysts in muscle and brain tissue. Despite their importance, bradyzoites remain difficult to investigate directly, owing to limited in vitro models. In addition, the need for new drugs targeting the chronic stage, which is underlined by the lack of eradicating treatment options, remains difficult to address since in vitro access to drug-tolerant bradyzoites remains limited. We recently published the use of a human myotube-based bradyzoite cell culture system and demonstrated its applicability to investigate the biology of T. gondii bradyzoites. Encysted parasites can be functionally matured during long-term cultivation in these immortalized cells and possess many in vivo–like features, including pepsin resistance, oral infectivity, and antifolate resistance. In addition, the system is scalable, enabling experimental approaches that rely on large numbers, such as metabolomics. In short, we detail the cultivation of terminally differentiated human myotubes and their subsequent infection with tachyzoites, which then mature to encysted bradyzoites within four weeks at ambient CO2 levels. We also discuss critical aspects of the procedure and suggest improvements.


Key features

• This protocol describes a scalable human myotube-based in vitro system capable of generating encysted bradyzoites featuring in vivo hallmarks.

• Bradyzoite differentiation is facilitated through CO2 depletion but without additional artificial stress factors like alkaline pH.

• Functional maturation occurs over four weeks.


Graphical overview


0 Q&A 579 Views Nov 5, 2023

Campylobacter jejuni, a zoonotic foodborne pathogen, is the worldwide leading cause of acute human bacterial gastroenteritis. Biofilms are a significant reservoir for survival and transmission of this pathogen, contributing to its overall antimicrobial resistance. Natural compounds such as essential oils, phytochemicals, polyphenolic extracts, and D-amino acids have been shown to have the potential to control biofilms formed by bacteria, including Campylobacter spp. This work presents a proposed guideline for assessing and characterizing bacterial biofilm formation in the presence of naturally occurring inhibitory molecules using C. jejuni as a model. The following protocols describe: i) biofilm formation inhibition assay, designed to assess the ability of naturally occurring molecules to inhibit the formation of biofilms; ii) biofilm dispersal assay, to assess the ability of naturally occurring inhibitory molecules to eradicate established biofilms; iii) confocal laser scanning microscopy (CLSM), to evaluate bacterial viability in biofilms after treatment with naturally occurring inhibitory molecules and to study the structured appearance (or architecture) of biofilm before and after treatment.

0 Q&A 420 Views Sep 5, 2023

Drug biotransformation by the host microbiome can impact the therapeutic success of treatment. In the context of cancer, drug degradation can take place within the microenvironment of the targeted tumor by intratumor bacteria. In pancreatic cancer, increased chemo-resistance against the frontline chemotherapy gemcitabine is thought to arise from drug degradation by the tumor microbiome. This bacterial–drug interaction highlights the need for developing rapid assays for monitoring bacterial gemcitabine breakdown. While chemical approaches such as high-performance liquid chromatography are suitable for this task, they require specialized equipment and expertise and are limited in throughput. Functional cell-based assays represent an alternate approach for performing this task. We developed a functional assay to monitor the rate of bacterial gemcitabine breakdown using a highly sensitive bacterial reporter strain. Our method relies on standard laboratory equipment and can be implemented at high throughput to monitor drug breakdown by hundreds of strains simultaneously. This functional assay can be readily adapted to monitor degradation of other drugs.


Key features

• Quantification of gemcitabine breakdown by incubating bacteria that degrades the drug and subsequently testing the growth of a reporter strain on filtered supernatant.

• Use of an optimized reporter strain that was genetically engineered to be a non-degrader strain and highly sensitive to gemcitabine.

• A high-throughput assay performed in microplates that can be adjusted for identifying bacteria with a fast or slow gemcitabine degradation rate.

• The assay results can be compared to results from a standard curve with known drug concentrations to quantify degradation rate.


Graphical overview



Protocol overview. (1) Bacteria are incubated with gemcitabine for a set period of time. (2) Samples are removed from co-incubated suspensions and filtered to remove bacteria to halt gemcitabine degradation. (3) A gemcitabine-sensitive reporter strain is then added to the conditioned supernatant and is supplemented with growth media. (4) Growth of the reporter strain is monitored over time. (5) Results from the growth experiments are used to infer the concentration of gemcitabine in the co-culture supernatant and the drug degradation rate.

0 Q&A 805 Views Nov 5, 2022

Ubiquitination is a post-translational modification conserved across eukaryotic species. It contributes to a variety of regulatory pathways, including proteasomal degradation, DNA repair, and cellular differentiation. The ubiquitination of substrate proteins typically requires three ubiquitination enzymes: a ubiquitin-activating E1, a ubiquitin-conjugating E2, and an E3 ubiquitin ligase. Cooperation between E2s and E3s is required for substrate ubiquitination, but some ubiquitin-conjugating E2s are also able to catalyze by themselves the formation of free di-ubiquitin, independently or in cooperation with a ubiquitin E2 variant. Here, we describe a method for assessing (i) di-ubiquitin formation by an E1 together with an E2 and an E2 variant, and (ii) the cooperation of an E3 with an E1 and E2 (with or without the E2 variant). Reaction products are assessed using western blotting with one of two antibodies: the first detects all ubiquitin conjugates, while the second specifically recognizes K63-linked ubiquitin. This allows unambiguous identification of ubiquitinated species and assessment of whether K63 linkages are present. We have developed these methods for studying ubiquitination proteins of Leishmania mexicana, specifically the activities of the E2, UBC2, and the ubiquitin E2 variant UEV1, but we anticipate the assays to be applicable to other ubiquitination systems with UBC2/UEV1 orthologues.

0 Q&A 1019 Views Oct 20, 2022

The human immunodeficiency virus 1 (HIV-1) consists of a viral membrane surrounding the conical capsid. The capsid is a protein container assembled from approximately 1,500 copies of the viral capsid protein (CA), functioning as a reaction and transport chamber for the viral genome after cell entry. Transmission electron microscopy (TEM) is a widely used technique for characterizing the ultrastructure of isolated viral capsids after removal of the viral membrane, which otherwise hinders negative staining of structures inside the viral particle for TEM. Here, we provide a protocol to permeabilize the membrane of HIV-1 particles using a pore-forming toxin for negative staining of capsids, which are stabilized with inositol hexakisphosphate to prevent premature capsid disassembly. This approach revealed the pleomorphic nature of capsids with a partially intact membrane surrounding them. The permeabilization strategy using pore-forming toxins can be readily applied to visualize the internal architecture of other enveloped viruses using TEM.


Graphical abstract:




0 Q&A 1585 Views Aug 5, 2022

Cryptococcus neoformans is a human pathogenic fungus that can cause pulmonary infections and meningitis in both immunocompromised and otherwise healthy individuals. Limited treatment options and a high mortality rate underlie the necessity for extensive research of the virulence of C. neoformans. Here we describe a detailed protocol for using the Galleria mellonella (Greater Wax Moth) larvae as a model organism for the virulence analysis of the cryptococcal infections. This protocol describes in detail the evaluation of G. mellonella larvae viability and the alternatives for troubleshooting the infection procedure. This protocol can be easily modified to study different inocula or fungal species, or the effects of a drug or antifungal agent on fungal disease within the larvae. We describe modified alternative versions of the protocol that allow using G. mellonella to study fungal diseases with different inocula and at different temperatures.

0 Q&A 1371 Views Jul 20, 2022

Aging and neuronal deterioration constitute important risk factors for the development of neuronal-related diseases, such as different dementia. The nematode Caenorhabditis elegans has emerged as a popular model system for studying neurodegeneration diseases, due to its complete neuronal connectivity map. DiI is a red fluorescent dye that can fill the worm amphid neurons and enables the visualization of their neurodegeneration over time. This protocol provides an efficient, fast, and safe method to stain worm amphid neurons to highlight the chemosensory structures of live nematodes.

0 Q&A 1489 Views Jun 5, 2022

Understanding the generation of mutations is fundamental to understanding evolution and genetic disease; however, the rarity of such events makes experimentally identifying them difficult. Mutation accumulation (MA) methods have been widely used. MA lines require serial bottlenecks to fix de novo mutations, followed by whole-genome sequencing. While powerful, this method is not suitable for exploring mutation variation among different genotypes due to its poor scalability with cost and labor. Alternatively, fluctuation assays estimate mutation rate in microorganisms by utilizing a reporter gene, in which Loss-of-function (LOF) mutations can be selected for using drugs toxic to cells containing the WT allele. Traditional fluctuation assays can estimate mutation rates but not their base change compositions. Here, we describe a new protocol that adapts traditional fluctuation assay using CAN1 reporter gene in Saccharomyces cerevisiae, followed by pooled sequencing methods, to identify both the rate and spectra of mutations in different strain backgrounds.

1 Q&A 2524 Views Jan 20, 2022

Rhizoctonia solani is a soil-borne fungus, which rarely produces any spores in culture. Hence, all inoculation procedures are based on mycelia, often as a coat on cereal kernels, placed in close vicinity to the plant to be infected. In this protocol, an inoculation method is described where the fungus is first allowed to infest a perlite-maize flour substrate for 10 days, followed by thorough soil mixing to generate uniform fungal distribution. Pre-grown seedlings are then replanted in the infested soil. Plant materials can be harvested, five (sugar beet) and ten days (Arabidopsis) post infection, followed by a rapid cleaning step ahead of any nucleic acid preparation. Commercial DNA or RNA extraction kits can be used or, if higher DNA yield is required, a CTAB extraction method. Our purpose was to develop a reliable and reproducible protocol to determine the infection levels in planta upon infection with R. solani. This protocol is less laborious compared to previous ones, improves the consistency of plant infection, reproducibility between experiments, and suits both a root crop and Arabidopsis.



Graphic abstract:



Overview of the R. solani infection procedure.


0 Q&A 1615 Views Dec 5, 2021

Pneumococcal (PN) meningitis is a life-threatening disease with high mortality rates that leads to permanent neurological sequelae. Studies of the process of bacterial crossing of the blood brain barrier (BBB) are hampered by the lack of relevant in vitro and in vivo models of meningitis that recapitulate the human disease. PN meningitis involves bacterial access to the bloodstream preceding translocation across the BBB. A large number of PN meningitis models have been developed in mice, with intravenous administration via the lateral tail vein representing the main way to study BBB crossing by PN. While in humans, meningitis is not always associated with bacteremia, PN meningitis after intravenous injection in mice usually develops following sustained and very high bacteremic titers. High grade bacteremia, however, is known to favor inflammation and BBB permeabilization, thereby increasing PN translocation across the BBB and associated damages. Therefore, specific processes associated with early events of PN translocation may be blurred by overall changes in the inflammatory environment and potentially systemic dysfunction in the case of severe sepsis. Here, we report a mouse meningitis model induced by PN injection in the retro-orbital (RO) sinus. We show that, in this model, mice appear to control bacteremic levels during the first 13 h post-infection, while PN crossing of the BBB can be clearly detected by fluorescence confocal microscopy analysis of brain slices as early as 6 h post-infection. Because of the low frequency of events, however, PN translocation across brain parenchymal vessels at early time points requires a rigorous and systematic examination of the brain volume.