编委
Oneil Girish Bhalala
  • Physician-Scientist, The Royal Melbourne Hospital
研究方向
  • Neuroscience
A PDMS-based Microfluidic Chip Assembly for Time-Resolved Cryo-EM (TRCEM) Sample Preparation
基于PDMS的微流控芯片组装用于时间分辨冷冻电镜(TRCEM)样品制备
作者:Xiangsong Feng and Joachim Frank日期:02/20/2025,浏览量:1148,Q&A: 0

Time-resolved cryo-EM (TRCEM) makes it possible to provide structural and kinetic information on a reaction of biomolecules before the equilibrium is reached. Several TRCEM methods have been developed in the past to obtain key insights into the mechanism of action of molecules and molecular machines on the time scale of tens to hundreds of milliseconds, which is unattainable by the normal blotting method. Here, we present our TRCEM setup utilizing a polydimethylsiloxane (PDMS)-based microfluidics chip assembly, comprising three components: a PDMS-based, internally SiO2-coated micromixer, a glass-capillary microreactor, and a PDMS-based microsprayer for depositing the reaction product onto the EM grid. As we have demonstrated in recent experiments, this setup is capable of addressing problems of severe sample adsorption and ineffective mixing of fluids and leads to highly reproducible results in applications to the study of translation. As an example, we used our TRCEM sample preparation method to investigate the molecular mechanism of ribosome recycling mediated by High frequency of lysogenization X (HflX), which demonstrated the efficacy of the TRCEM device and its capability to yield biologically significant, reproducible information. This protocol has the promise to provide structural and kinetic information on pre-equilibrium intermediates in the 10–1,000 ms time range in applications to many other biological systems.

Chemogenetic Silencing of Neonatal Spontaneous Activity of Projection Neurons in the Dorsal Striatum of Mice
通过化学遗传学沉默小鼠背侧纹状体投射神经元的新生期自发活动
作者:Bojana Kokinovic, Maria Ryazantseva and Svetlana Molchanova日期:10/20/2024,浏览量:361,Q&A: 0

Neuroscience incorporates manipulating neuronal circuitry to enhance the understanding of intricate brain functions. An effective strategy to attain this objective entails utilizing viral vectors to induce varied gene expression by delivering transgenes into brain cells. Here, we combine the use of transgenic mice, neonatal transduction with adeno-associated viral constructs harboring inhibitory designer receptor exclusively activated by designer drug (DREADD) gene, and the DREADD agonist clozapine N-oxide (CNO). In this way, a chemogenetic approach is employed to suppress neuronal activity in the region of interest during a critical developmental window, with subsequent investigation into its effects on the neuronal circuitry in adulthood.

Using Localization Microscopy to Quantify Calcium Channels at Presynaptic Boutons
使用定位显微技术量化突触前终扣的钙通道
作者:Brian D. Mueller, Sean A. Merrill, Lexy Von Diezmann and Erik M. Jorgensen日期:08/20/2024,浏览量:835,Q&A: 0

Calcium channels at synaptic boutons are critical for synaptic function, but their number and distribution are poorly understood. This gap in knowledge is primarily due to the resolution limits of fluorescence microscopy. In the last decade, the diffraction limit of light was surpassed, and fluorescent molecules can now be localized with nanometer precision. Concurrently, new gene editing strategies allowed direct tagging of the endogenous calcium channel genes—expressed in the correct cells and at physiological levels. Further, the repurposing of self-labeling enzymes to attach fluorescent dyes to proteins improved photon yields enabling efficient localization of single molecules. Here, we describe tagging strategies, localization microscopy, and data analysis for calcium channel localization. In this case, we are imaging calcium channels fused with SNAP or HALO tags in live anesthetized C. elegans nematodes, but the analysis is relevant for any super-resolution preparations. We describe how to process images into localizations and protein clusters into confined nanodomains. Finally, we discuss strategies for estimating the number of calcium channels present at synaptic boutons.

Construction of ThermoMaze
热迷宫的构建

Physiological changes during awake immobility–related brain states remain one of the great unexplored behavioral states. Controlling periods of awake immobility is challenging because restraining the animal is stressful and is accompanied by altered physiological states. Here, we describe the ThermoMaze, a behavioral paradigm that allows for the collection of large amounts of physiological data while the animal rests at distinct experimenter-determined locations. We found that the paradigm generated long periods of immobility and did not alter the brain temperature. We combined the ThermoMaze with electrophysiology recordings in the CA1 region of the hippocampus and found a location-specific distribution of sharp-wave ripple events. We describe the construction of the ThermoMaze with the intention that it helps enable large-scale data recordings on immobility-related brain states.

Princeton RAtlas: A Common Coordinate Framework for Fully cleared, Whole Rattus norvegicus Brains
Princeton RAtlas:完全清除的完整褐家鼠大脑的通用坐标框架

Whole-brain clearing and imaging methods are becoming more common in mice but have yet to become standard in rats, at least partially due to inadequate clearing from most available protocols. Here, we build on recent mouse-tissue clearing and light-sheet imaging methods and develop and adapt them to rats. We first used cleared rat brains to create an open-source, 3D rat atlas at 25 μ resolution. We then registered and imported other existing labeled volumes and made all of the code and data available for the community (https://github.com/emilyjanedennis/PRA) to further enable modern, whole-brain neuroscience in the rat.


Key features

• This protocol adapts iDISCO (Renier et al., 2014) and uDISCO (Pan et al., 2016) tissue-clearing techniques to consistently clear rat brains.

• This protocol also decreases the number of working hours per day to fit in an 8 workday.


Graphical overview



The Effects of Whole-body Cold-water Immersion on Brain Connectivity Related to the Affective State in Adults Using fMRI: A Protocol of a Pre-post Experimental Design
使用 fMRI 进行全身冷水浸泡对与成人情感状态相关的大脑连接的影响:前后实验设计方案
作者:Ala Yankouskaya, Heather Massey, John James Totman, Lin Hui Lai and Ruth Williamson日期:09/05/2023,浏览量:666,Q&A: 0

An emerging body of behavioural studies indicates that regular swimming in cold water has positive effects on mental health and wellbeing, such as reducing fatigue, improving mood, and lessening depressive symptoms. Moreover, some studies reported immediate effects of cold-water immersion (CWI) on elevating mood and increasing a positive emotional state. However, the neural mechanisms underlying these effects remain largely unknown. The lack of studies using neuroimaging techniques to investigate how a whole-body CWI affects neural processes has partly resulted from the lack of a tested experimental protocol. Previous protocols administered tonic limb cooling (1–10 °C) while recording functional magnetic resonance (fMRI) signals. However, using very low water temperature constitutes points of contrast to painful experiences that are different from what we experience after a whole-body head-out CWI. In our protocol, healthy adults unhabituated to cold water were scanned twice: immediately before (pre-CWI) and after (post-CWI) immersion in cold water (water temperature 20 °C) for 5 min. We recorded cardiac and ventilatory responses to CWI and assessed self-reported changes in positive and negative affects. Our protocol showed reliable changes in brain connectivity after a short exposure to cold water, thus enabling its use as a tested experimental framework in future studies.


Graphical overview


Alginate Gel Immobilization of Caenorhabditis elegans for Optical Calcium Imaging of Neurons
褐藻胶固定化秀丽隐杆线虫用于神经元的光学钙成像
作者:Aswathy Mangalath, Vishnu Raj, Rasitha Santhosh and Anoopkumar Thekkuveettil日期:06/20/2023,浏览量:762,Q&A: 0

A fascinating question in neuroscience is how sensory stimuli evoke calcium dynamics in neurons. Caenorhabditis elegans is one of the most suitable models for optically recording high-throughput calcium spikes at single-cell resolution. However, calcium imaging in C. elegans is challenging due to the difficulties associated with immobilizing the organism. Currently, methods for immobilizing worms include entrapment in a microfluidic channel, anesthesia, or adhesion to a glass slide. We have developed a new method to immobilize worms by trapping them in sodium alginate gel. The sodium alginate solution (5%), polymerized with divalent ions, effectively immobilizes worms in the gel. This technique is especially useful for imaging neuronal calcium dynamics during olfactory stimulation. The highly porous and transparent nature of alginate gel allows the optical recording of cellular calcium oscillations in neurons when briefly exposed to odor stimulation.

Protocol for 3D Bioprinting Mesenchymal Stem Cell–derived Neural Tissues Using a Fibrin-based Bioink
使用基于纤维蛋白的生物墨水对间充质干细胞衍生的神经组织进行3D生物打印的方案

Three-dimensional bioprinting utilizes additive manufacturing processes that combine cells and a bioink to create living tissue models that mimic tissues found in vivo. Stem cells can regenerate and differentiate into specialized cell types, making them valuable for research concerning degenerative diseases and their potential treatments. 3D bioprinting stem cell–derived tissues have an advantage over other cell types because they can be expanded in large quantities and then differentiated to multiple cell types. Using patient-derived stem cells also enables a personalized medicine approach to the study of disease progression. In particular, mesenchymal stem cells (MSC) are an attractive cell type for bioprinting because they are easier to obtain from patients in comparison to pluripotent stem cells, and their robust characteristics make them desirable for bioprinting. Currently, both MSC bioprinting protocols and cell culturing protocols exist separately, but there is a lack of literature that combines the culturing of the cells with the bioprinting process. This protocol aims to bridge that gap by describing the bioprinting process in detail, starting with how to culture cells pre-printing, to 3D bioprinting the cells, and finally to the culturing process post-printing. Here, we outline the process of culturing MSCs to produce cells for 3D bioprinting. We also describe the process of preparing Axolotl Biosciences TissuePrint - High Viscosity (HV) and Low Viscosity (LV) bioink, the incorporation of MSCs to the bioink, setting up the BIO X and the Aspect RX1 bioprinters, and necessary computer-aided design (CAD) files. We also detail the differentiation of 2D and 3D cell cultures of MSC to dopaminergic neurons, including media preparation. We have also included the protocols for viability, immunocytochemistry, electrophysiology, and performing a dopamine enzyme-linked immunosorbent assay (ELISA), along with the statistical analysis.


Graphical overview


In vitro Reconstitution of Phase-separated p62 Bodies on the Arp2/3-derived Actin Network
相分离的p62体在Arp2/3衍生的肌动蛋白网络上的体外重组
作者:Tong Liu, Mengbo Xu and Na Mi日期:04/20/2023,浏览量:799,Q&A: 0

In cells, p62/SQSTM1 undergoes liquid–liquid phase separation (LLPS) with poly-ubiquitin chains to form p62 bodies that work as a hub for various cellular events, including selective autophagy. Cytoskeleton components such as Arp2/3-derived branched actin network and motor protein myosin 1D have been shown to actively participate in the formation of phase-separated p62 bodies. Here, we describe a detailed protocol on the purification of p62 and other proteins, the assembly of the branched actin network, and the reconstitution of p62 bodies along with cytoskeletal structures in vitro. This cell-free reconstitution of p62 bodies vividly mimics the phenomenon in which low concentrations of protein in vivo rely on cytoskeleton dynamics to increase the local concentration to reach the threshold for phase separation. This protocol provides an easily implemented and typical model system to study cytoskeleton-involved protein phase separation.

Preparation and Characterization of IL-22 mRNA-Loaded Lipid Nanoparticles
负载IL-22 mRNA的脂质纳米颗粒的制备与表征
作者:Zahra Alghoul, Junsik Sung, Kenji Wu, Gianfranco Alpini, Shannon Glaser, Chunhua Yang and Didier Merlin日期:04/05/2023,浏览量:869,Q&A: 0

Interleukin-22 (IL-22) has been demonstrated as a critical regulator of epithelial homeostasis and repair; it showed an anti-inflammatory effect against ulcerative colitis. Local microinjection of IL-22 cDNA vector has been shown to be effective in treating ulcerative colitis in mouse models. However, microinjection comes with multiple technical challenges for routine colon-targeted drug delivery. In contrast, oral administration can get around these challenges and provide comparable efficacy. We showed in previous studies that oral administration of new lipid nanoparticles (nLNP)-encapsulated IL-22 mRNA targets the colon region and efficiently ameliorates colitis. This protocol describes the details of preparing and characterizing the nLNP-encapsulated IL-22 mRNA using three major lipids that mimic the natural ginger-derived nanoparticles. It provides an nLNP platform that can be used to orally deliver other types of nucleic acids to the colon.