SR
Swetha Reddy
  • Mississippi State University
研究方向
  • Microbiology
Detection of Protein S-nitrosothiols (SNOs) in Plant Samples on Diaminofluorescein (DAF) Gels
在二氨基荧光素(DAF)凝胶上检测植物样品中的蛋白质S-亚硝基硫醇(SNO)
作者:Marta Rodríguez-Ruiz, Paulo T. Mioto, José M. Palma and Francisco J. Corpas 日期:09/20/2017,浏览量:7246,Q&A: 0
In plant cells, the analysis of protein S-nitrosothiols (SNOs) under physiological and adverse stress conditions is essential to understand the mechanisms of Nitric oxide (NO)-based signaling. We adapted a previously reported protocol for detecting protein SNOs in animal systems (King et al., 2005) for plant samples. Briefly, proteins from plant samples are separated via non-reducing SDS-PAGE, then the NO bound by S-nitrosylated proteins is released using UV light and, finally, the NO is detected using the fluorescent probe DAF-FM (Rodriguez-Ruiz et al., 2017). Thus, the approach presented here provides a relatively quick and economical procedure that can be used to compare protein SNOs content in plant samples and provide insight in NO-based signaling in plants.
Observation of Pneumococcal Phase Variation in Colony Morphology
肺炎球菌菌落形态学相位变异的观察
作者:Jing Li, Juanjuan Wang, Fangfang Jiao and Jing-Ren Zhang日期:08/05/2017,浏览量:9011,Q&A: 0
Streptococcus pneumoniae (pneumococcus) is an important human pathogen that causes pneumonia, meningitis, sepsis, and otitis media. This bacterium normally resides in the nasopharynx as a commensal, but sometimes disseminates to sterile sites of humans and causes local or systemic inflammation. This biphasic behavior of S. pneumoniae is correlated with a reversible switch between the opaque and transparent colony forms on agar plates, a phenomenon referred to as phase variation. The opaque variants appear to be more virulent in animal models of bacteremia but are deficient in nasopharyngeal colonization animal models. In contrast, the transparent variants display higher levels of nasopharyngeal colonization but relatively lower virulence in animal models. We have recently demonstrated that pneumococcal phase variation between these two colony types is caused by a reversible switch of genome DNA methylation (or epigenetic) patterns, which is driven by DNA inversions in the DNA methyltransferase genes. Observation of colony morphology is a simple and useful method to differentiate colonies with different characteristics, such as size, color, and opacity. This protocol describes how to study pneumococcal phase variation in colony morphology with a dissection microscope.
Wheat Root-dip Inoculation with Fusarium graminearum and Assessment of Root Rot Disease Severity
浸根接种法评估禾谷镰孢菌导致小麦根腐病的致病力
作者:Qing Wang and Sven Gottwald日期:03/20/2017,浏览量:10331,Q&A: 0
Fusarium graminearum is one of the most common and potent fungal pathogens of wheat (Triticum aestivum) and other cereals, known for causing devastating yield losses and mycotoxin contaminations of food and feed. The pathogen is mainly considered as a paradigm for the floral disease Fusarium head blight, while its ability to colonize wheat plants via root infection has been examined recently. F. graminearum has a unique infection strategy which comprises complex, specialized structures and processes. Root colonisation negatively affects plant development and leads to systemic plant invasion by tissue-adapted fungal strategies. The pathosystem wheat root - F. graminearum makes available an array of research areas, such as (i) the relatively unknown root interactions with a necrotrophic pathogen; (ii) genes and pathways contributing to (overall) Fusarium resistance; (iii) induced systemic (whole-plant) resistance; (iv) pathogenic strategies in a variety of host tissues; and (v) age-related changes in the single-genotype responses to seedling and adult plant (root/spike) infection. The presented Fusarium root rot bioassay allows for efficient infection of wheat roots, evaluation of disease severity and progress as well as statistical analysis of disease dynamics.
A Modified Chromogenic Assay for Determination of the Ratio of Free Intracellular NAD+/NADH in Streptococcus mutans
改进型显色试验测定变异链球菌中的游离胞内NAD+/NADH比率
作者:Jonathon L. Baker, Roberta C. Faustoferri and Robert G. Quivey, Jr日期:08/20/2016,浏览量:13045,Q&A: 2
Nicotinamide adenine dinucleotide is a coenzyme present in all kingdoms of life and exists in two forms: oxidized (NAD+) and reduced (NADH). NAD(H) is involved in a multitude of essential metabolic redox reactions, providing oxidizing or reducing equivalents. The ratio of free intracellular NAD+/NADH is fundamentally important in the maintenance of cellular redox homeostasis (Ying, 2008). Various chromogenic cycling assays have been used to determine the ratio of NAD+/NADH in both bacterial and mammalian cells for more than forty years (Bernofsky and Swan, 1973; Nisselbaum and Green, 1969).

Here, we describe in detail an assay to determine the ratio of free intracellular NAD+ to NADH in Streptococcus mutans. This cycling assay is a modified version of the protocol first described by Bernofsky and Swan (Bernofsky and Swan, 1973), using the extraction buffer described by Frezza et al. (2011), followed by the reduced MTT precipitation described by Gibbon and Larher (Gibon and Larher, 1997). As depicted in Figure 1, alcohol dehydrogenase is used to drive a series of redox reactions utilizing exogenously added ethanol and NAD+ from sample extracts as initial substrates, phenazine ethosulfate (PES) as an electron carrier, and thiazolyl blue tetrazolium bromide (MTT) as a terminal electron acceptor. 6 M NaCl is used to stop the reaction. The reduced MTT (formazan dye) is purple in color and can be quantified by measuring absorbance at 570 nm. This protocol is divided into three steps: A. Preparation of cell pellets of S. mutans; B. Preparation of deproteinated cell extracts containing NADtotal or NADH; C. NAD+/NADH cycling assay. This method has proven robust in measuring the NAD+/NADH ratio in S. mutans under a variety of conditions, and should be applicable to other Gram-positive bacteria.


Figure 1. Flowchart illustrating protocol Procedure parts B-C