Wei-Hua Tang
  • Professor, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science
  • Plant science


Ph.D, Shanghai Institute of Plant Physiology, Chinese Academy of Science, 1999


  1. Xie, Q. N., Jia, L. J., Wang, Y. Z., Song, R. T. and Tang, W. H.* (2017). High-resolution gene profiling of infection process indicates serine metabolism adaptation of Fusarium graminearum in host. Science Bulletin 62: 758-760.
  2. He, J., Yuan, T. and Tang, W.* (2016). Fusarium graminearum Maize Stalk Infection Assay and Associated Microscopic Observation Protocol. Bio Protoc 6(23): e2034.
  3. Yao, S. H., Guo, Y., Wang, Y. Z., Zhang, D., Xu, L. and Tang, W. H. (2016). A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genet Biol 91: 32-42.
  4. Zhang, Y., He, J., Jia, L. J., Yuan, T. L., Zhang, D., Guo, Y., Wang, Y. and Tang, W. H. (2016). Cellular Tracking and Gene Profiling of Fusarium graminearum during Maize Stalk Rot Disease Development Elucidates Its Strategies in Confronting Phosphorus Limitation in the Host Apoplast. PLoS Pathog 12(3): e1005485.
  5. Jia, L. J. and Tang, W. H. (2015). The omics era of Fusarium graminearum: opportunities and challenges. New Phytol 207(1): 1-3.
  6. Gui, C. P., Dong, X., Liu, H. K., Huang, W. J., Zhang, D., Wang, S. J., Barberini, M. L., Gao, X. Y., Muschietti, J., McCormick, S. and Tang, W. H.* (2014). Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. Plant Cell 26(9): 3538-3555.
  7. Huang, W. J., Liu, H. K., McCormick, S. and Tang, W. H.* (2014). Tomato pistil factor STIG1 promotes in vivo pollen tube growth by binding to phosphatidylinositol 3-Phosphate and the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 26(6): 2505-2523.
  8. Zhu, P., Wu, L., Liu, L., Huang, L., Wang, Y., Tang, W. and Xu, L.* (2013). Fusarium asiaticum: an emerging pathogen jeopardizing postharvest asparagus spears. J Phytopathol 161: 696-703.
  9. Liu, X., Zhang, X., Tang, W. H., Chen, L. and Zhao, X. M.* (2013). eFG: an electronic resource for Fusarium graminearum. Database (Oxford) 2013: bat042.
  10. Lu, T., Zhu, C., Lu, G., Guo, Y., Zhou, Y., Zhang, Z., Zhao, Y., Li, W., Lu, Y., Tang, W., Feng, Q. and Han, B.* (2012). Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice. BMC Genomics 13: 721.
  11. Zhang, X. W., Jia, L. J., Zhang, Y., Jiang, G., Li, X., Zhang, D. and Tang, W. H.* (2012). In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. Plant Cell 24(12): 5159-5176.
  12. Tang, W. H., Zhang, Y. and Duvick, J. (2012). The application of laser microdissection to profiling fungal pathogen gene expression in planta. Methods Mol Biol 835: 219-236.
  13. Liu, X., Tang, W. H., Zhao, X. M.* and Chen, L.* (2010). A network approach to predict pathogenic genes for Fusarium graminearum. PLoS One 5(10).
  14. Tang, X., Zhang, Z. Y., Zhang, W. J., Zhao, X. M., Li, X., Zhang, D., Liu, Q. Q. and Tang, W. H.* (2010). Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. Plant Physiol 154(4): 1855-1870.
  15. Tang, X., Liu, Q. Q. and Tang, W. H.* (2009). Laser microdissection facilitates a comprehensive understanding of molecular mechanisms of plant male gametes production. Chinese Journal of Cell Biology 31:151-156. (in Chinese)
  16. Zhao, X. M.*, Zhang, X. W., Tang, W. H. and Chen, L. (2009). FPPI: Fusarium graminearum protein-protein interaction database. J Proteome Res 8(10): 4714-4721.
  17. Zhang, D., Wengier, D., Shuai, B., Gui, C. P., Muschietti, J., McCormick, S. and Tang, W. H.* (2008). The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148(3): 1368-1379.

  18. Zhang, D. and Tang, W. H*. (2007). Trends in laser microdissection of plant cells. Plant Physiology Communications 43:917-920. (in Chinese)
  19. Tang, W., Coughlan, S., Crane, E., Beatty, M. and Duvick, J. (2006). The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Mol Plant Microbe Interact 19(11): 1240-1250.   
  20. Tang, W., Kelley, D., Ezcurra, I., Cotter, R. and McCormick, S.* (2004). LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J 39(3): 343-353.
  21. Guyon, V., Tang, W. H., Monti, M. M., Raiola, A., Lorenzo, G. D., McCormick, S. and Taylor, L. P.* (2004). Antisense phenotypes reveal a role for SHY, a pollen-specific leucine-rich repeat protein, in pollen tube growth. Plant J 39(4): 643-654.
  22. Wengier, D., Valsecchi, I., Cabanas, M. L., Tang, W. H., McCormick, S. and Muschietti, J.* (2003). The receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract. Proc Natl Acad Sci U S A 100(11): 6860-6865.
  23. Chen, J., Tang, W. H., Hong, M. M. and Wang, Z. Y.* (2003). OsBP-73, a rice gene, encodes a novel DNA-binding protein with a SAP-like domain and its genetic interference by double-stranded RNA inhibits rice growth. Plant Mol Biol 52(3): 579-590.
  24. Tang, W., Ezcurra, I., Muschietti, J. and McCormick, S.* (2002). A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14(9): 2277-2287.   
  25. Kim, H. U., Cotter, R., Johnson, S., Senda, M., Dodds, P., Kulikauska, R., Tang, W., Ezcura, I., Herzmark, P. and McCormick, S.* (2002). New pollen-specific receptor kinases identified in tomato, maize and Arabidopsis: the tomato kinases show overlapping but distinct localization patterns on pollen tubes. Plant Mol Biol 50(1): 1-16.