Matthew Reeves
  • Institute of Immunity and Transplantation, University College London, UK
  • Microbiology


Ph.D., Department of Medicine, University of Cambridge, Cambridge, England, 2004

Current position

UK Medical Research Council Fellow and Senior Lecturer, Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, Royal Free Campus, London, England


  1. Griffiths, P., Baraniak, I. and Reeves, M. (2014). The pathogenesis of human cytomegalovirus. J Pathol. (Epub ahead of print) (Review)
  2. Glover, T. E., Kew, V. G. and Reeves, M. B. (2014). Rapamycin does not inhibit human cytomegalovirus reactivation from dendritic cells in vitro. J Gen Virol 95(Pt 10): 2260-2266.
  3. Sinclair, J. and Reeves, M. (2014). The intimate relationship between human cytomegalovirus and the dendritic cell lineage. Front Microbiol 5. (Review)
  4. Kew, V. G., Yuan, J., Meier, J. and Reeves, M. B. (2014). Mitogen and stress activated kinases act co-operatively with CREB during the induction of human cytomegalovirus immediate-early gene expression from latency. PLoS Pathog 10(6): e1004195.
  5. Poole, E., Reeves, M. and Sinclair, J. H. (2014). The Use of Primary Human Cells (Fibroblasts, Monocytes, and Others) to Assess Human Cytomegalovirus Function. In: Human Cytomegaloviruses. Springer: 81-98.
  6. Sinclair, J. H. and Reeves, M. B. (2013). Human cytomegalovirus manipulation of latently infected cells. Viruses 5(11): 2803-2824. (Review)
  7. Reeves, M. B. and Sinclair, J. H. (2013). Circulating dendritic cells isolated from healthy seropositive donors are sites of human cytomegalovirus reactivation in vivo. J Virol 87(19): 10660-10667.
  8. Reeves, M. and Sinclair, J. (2013). Regulation of human cytomegalovirus transcription in latency: Beyond the major immediate-early promoter. Viruses 5(6): 1395-1413. (Review)
  9. Reeves, M. and Sinclair, J. (2013). Epigenetic regulation of human cytomegalovirus gene expression: impact on latency and reactivation. In: Cytomegaloviruses: from molecular pathogenesis to intervention 1. (Review)
  10. Huang, M. M., Kew, V. G., Jestice, K., Wills, M. R. and Reeves, M. B. (2012). Efficient human cytomegalovirus reactivation is maturation dependent in the Langerhans dendritic cell lineage and can be studied using a CD14+ experimental latency model. J Virol 86(16): 8507-8515.
  11. Reeves, M. B., Breidenstein, A. and Compton, T. (2012). Human cytomegalovirus activation of ERK and myeloid cell leukemia-1 protein correlates with survival of latently infected cells. Proc Natl Acad Sci U S A 109(2): 588-593.
  12. Reeves, M. B. and Compton, T. (2011). Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol 85(23): 12750-12758.
  13. Reeves, M. B. (2011). Chromatin-mediated regulation of cytomegalovirus gene expression. Virus Res 157(2): 134-143. (Review)
  14. Reeves, M., Woodhall, D., Compton, T. and Sinclair, J. (2010). Human cytomegalovirus IE72 protein interacts with the transcriptional repressor hDaxx to regulate LUNA gene expression during lytic infection. J Virol 84(14): 7185-7194.
  15. Reeves, M. B. and Sinclair, J. H. (2010). Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J Gen Virol 91(Pt 3): 599-604.
  16. Groves, I. J., Reeves, M. B. and Sinclair, J. H. (2009). Lytic infection of permissive cells with human cytomegalovirus is regulated by an intrinsic 'pre-immediate-early' repression of viral gene expression mediated by histone post-translational modification. J Gen Virol 90(Pt 10): 2364-2374.
  17. Reeves, M. and Sinclair, J. (2008). Aspects of human cytomegalovirus latency and reactivation. In: Human Cytomegalovirus. Springer: 297-313. (Review)
  18. Reeves, M. B., Davies, A. A., McSharry, B. P., Wilkinson, G. W. and Sinclair, J. H. (2007). Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316(5829): 1345-1348. [See also Perspectives section in Science 317(5836): 329-30]
  19. Goodrum, F., Reeves, M., Sinclair, J., High, K. and Shenk, T. (2007). Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood 110(3): 937-945.
  20. Woodhall, D. L., Groves, I. J., Reeves, M. B., Wilkinson, G. and Sinclair, J. H. (2006). Human Daxx-mediated repression of human cytomegalovirus gene expression correlates with a repressive chromatin structure around the major immediate early promoter. J Biol Chem 281(49): 37652-37660. 
  21. Reeves, M., Murphy, J., Greaves, R., Fairley, J., Brehm, A. and Sinclair, J. (2006). Autorepression of the human cytomegalovirus major immediate-early promoter/enhancer at late times of infection is mediated by the recruitment of chromatin remodeling enzymes by IE86. J Virol 80(20): 9998-10009.
  22. Wills, M. R., Ashiru, O., Reeves, M. B., Okecha, G., Trowsdale, J., Tomasec, P., Wilkinson, G. W., Sinclair, J. and Sissons, J. G. (2005). Human cytomegalovirus encodes an MHC class I-like molecule (UL142) that functions to inhibit NK cell lysis. J Immunol 175(11): 7457-7465.
  23. Reeves, M. B., Lehner, P. J., Sissons, J. G. and Sinclair, J. H. (2005). An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol 86(Pt 11): 2949-2954.
  24. Reeves, M. B., MacAry, P. A., Lehner, P. J., Sissons, J. G. and Sinclair, J. H. (2005). Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 102(11): 4140-4145.
  25. Bain, M., Reeves M. B. and Sinclair J. H. (2005). Regulation of HCMV gene expression by chromatin remodeling. In: Reddehase, M. (ed). Cytomegaloviruses: Molecular Biology and Immunology. Caister Academic Press. (Review)
  26. Reeves, M., Sissons, P. and Sinclair, J. (2005). Reactivation of human cytomegalovirus in dendritic cells. Discov Med 5(26): 170-174. (Review)