Molecular machines manage the flow of genetic information in DNA to active and functional proteins through the process of central dogma. The machines that mediate the information transfer from DNA to protein are RNA polymerase and ribosome. The synthesis of RNA from a DNA template is catalysed by RNA polymerase and the process is known as transcription. On the other hand, the process of information transfer from RNA to protein is mediated by ribosome. Our laboratory, since several decades has been working on the mechanistic details of transcription process in bacteria under stress.
http://mbu.iisc.ac.in/DCLAB_website1.htm/index.html
https://scholar.google.com/citations?hl=en&user=ZwC4W_sAAAAJ&view_op=list_works&sortby=pubdateList of Publications (2013 Onwards)
1. Identification and characterization of starvation induced msdgc-1 promoter involved in the c-di-GMP turnover. B.K. Bharati, R.K. Swetha and Chatterji. D, Gene, 528, 99 (2013).
2. Inactivation of the bacterial RNA polymerase due to acquisition of secondary structure by the omega subunit. P. Sarkar, A.A. Sardesai, K.S. Murakami and D. Chatterji, J. Biol. Chem, 288, 25076 (2013).
3. Synthetic arabinan, arabinomannan glycolipids and their effects on mycobacterial growth, sliding motitlity and biofilm formation. B.K. Bharati, K. Naresh, D. Chatterji and N. Jayaraman, Carbohydr. Chem., 39, 58 (2013).
4. Quorum sensing and pathogenesis: Role of small signaling molecules in bacterial persistence. B.K. Bharati, and D. Chatterji, Current Science, 105 , 643 (2013).
5. A histidine aspartate ionic lock gates the iron passage in miniferritins from Mycobacterium smegmatis. S.M. Williams, A.V. Chandran, M.S. Vijaybaskar, S. Roy, H. Balaram, S. Vishveshwara, M. Vijayan and D. Chatterji, J. Biol. Chem., 289, 11082 (2014).
6. Dual role of MsRbpA: transcription activation and rescue of transcription from the inhibitory effect of rifampicin. A.K. Verma and D. Chatterji, Microbiology, 160, 2018 (2014).
7. Characterization of a dual active enzyme, DcpA, involved in c-di-GMP turnover in Mycobacterium smegmatis. I.M. Sharma, S. Prakash, D. Thillaivillalan and D. Chatterji, Microbiology, 160, 2304 (2014).
8. Quorum sensing and biofilm formation in mycobacteria: Role of c-di-GMP and methods to study this second messenger. I.M. Sharma, A. Petchiappan and D. Chatterji, IUBMB life, 66, 823 (2014).
9. Synthetic glycolipids and (p)ppGpp analogs: Development of inhibitors for mycobacterial growth, biofilm and stringent response. K. Syal, K. Maiti, N. Kottari, N. Jayaraman and D. Chatterji, Adv. Exp. Med. Biol., 842, 309 (2015).
10. Phenotype microarray analysis of Mycobacterium smegmatis and its isogenic strains reveals novel functions of (p)ppGpp and c-di-GMP in mycobacterial physiology. K.R. Gupta, S. Kasetty and D. Chatterji, Appl. Environ. Microbiol., 81, 2571(2015).
11. Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacterium smegmatis. K. Syal, H. Joshi, D. Chatterji* and V. Jain*, FEBS J., 282, 3773 (2015).
12. The mycobacterial iron dependent regulator IdeR induces ferritin (bfrB) by alleviating Lsr 2 repression. K. Kurthkoti, P. Tare, R. Paitchowdhury, V.N. Gowthami, M J. Garcia, R. Colangeli, D. Chatterji, V. Nagaraja and G.M. Rodriguez, Mol. Microbiol. 98, 864 (2015).
13. Differential binding of ppGpp and pppGpp to E. coli RNA polymerase: photo- labeling and mass spectral studies. K. Syal and D.Chatterji, Genes to Cells, 20, 1006 (2015).
14. Regulation of growth, cell shape, cell division and gene expression by second messengers (p)ppGpp and c-di-GMP in Mycobacterium smegmatis. KR. Gupta, P. Baloni, S.S. Indi and D. Chatterji, J Bacteriol., 198, 1414 (2016).
15. Synthetic arabinomannan glycolipids impede mycobacterial growth, sliding motility and biofilm structure. K. Syal, K. Maiti, K. Naresh, P.G. Avaji, D. Chatterji and N. Jayaraman, Glycoconj. J., 33,763 (2016).
16. Sigma factor competition in Escherichia coli: Kinetic and thermodynamic perspectives. K.R. Gupta, and D. Chatterji, In 'Stress and Environment Control of Bacterial Gene Expression, John Wiley & Sons, DOI: 10.1002/9781119004813.ch16 (2016).
17. R‐loop induced stress response by second (p) ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence. S. Krishnan, A. Petchiappan, A. Singh, A. Bhatt and D. Chatterji, Mol. Microbiol.,102,168 (2016).
18. A micrometer-sized heat engine operating between bacterial reservoirs. S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapathy and A.K. Sood. Nature Phys., 12, 1314 (2016).
19. Vitamin C targets (p)ppGpp synthesis leading to stalling of long-term survival and biofilm formation in Mycobacterium smegmatis. K. Syal, N. Bhardwaj and D. Chatterji, FEMS Microbiol. Lett., 364, fnw282 (2017).
20. Influence of flexible "ω" on the Activity of E. coli RNA polymerase: A thermodynamic Analysis. D. Bhowmik, N. Bhardwaj and D. Chatterji, Biophys J., 112, 901 (2017).
21. Two zinc finger proteins from Mycobacterium smegmatis: DNA binding and activation of transcription. S. Ghosh and D. Chatterji, Genes to Cells, 22, 699 (2017).
22. Synthetic (p)ppGpp analogue is an inhibitor of stringent response in Mycobacteria. K. Syal, K. Flentie, N. Bhardwaj, K. Maiti, N. Jayaraman, C.L. Stallings and D. Chatterji, Antimicrob. Agents Chemother., 61, e00443-17 (2017).
23. Flexible aspartates propel iron to the ferroxidation sites along pathways stabilized by a conserved arginine in Dps proteins from Mycobacterium smegmatis. S.M. Williams and D. Chatterji. Metallomics, 9, 685 (2017).
24. Pup recycling regulates the proteasome. A. Petchiappan and D. Chatterji, FEBS J., 284, 1787 (2017).
25. Synthetic arabinomannan heptasaccharide glycolipids inhibit biofilm growth and supplements isoniazid effects in Mycobacterium smegmatis. N. Jayaraman, K. Maiti, K. Syal and D. Chatterji, ChemBioChem, 18, 1959 (2017).
26. A mutation directs the structural switch of DNA binding proteins under starvation to a ferritin-like protein cage. S. M. Williams, A. V. Chandran, S. Prakash, M. Vijayan and D. Chatterji. Structure, 25, 1449 (2017).
27. Antibiotic resistance: Current perspectives. A. Petchiappan and D. Chatterji. ACS Omega, 2, 7400 (2017).
28. Altered distribution of RNA polymerase lacking the omega subunit within the prophages along the Escherichia coli K-12 genome. K. Yamamoto, Y. Yamanaka, T. Shimada, P. Sarkar, M. Yoshida, N. Bhardwaj, H. Watanabe , Y. Taira, D. Chatterji and A. Ishihama. mSystems, 3, e00172 (2018).
29. Vitamin C: A Natural Inhibitor of Cell Wall Functions and Stress Response in Mycobacteria. K. Syal, D. Chatterji. In: Chattopadhyay K, Basu SC (editors). Biochemical and Biophysical Roles of Cell Surface Molecules (Advances in Experimental Medicine and Biology. Singapore: Springer Singapore; (2018). p. 392.
30. The role of omega-subunit of Escherichia coli RNA polymerase in stress response. N. Bhardwaj, K. Syal and D. Chatterji. Genes Cells, 23, 357 (2018).
31. Substrate-induced domain movement in a bifunctional protein, DcpA, regulates cyclic di-GMP turnover: Functional implications of a highly conserved motif. B.K. Bharati, R. Mukherjee and D. Chatterji. J. Biol. Chem., 293, 14065 (2018).
32. 4-Hydroxy-2-pyridone derivatives and the delta-pyrone isostere as novel agents against Mycobacterium smegmatis biofilm inhibitors. M. R. Borkar, S. Nandan, H. K. M. Nagaraj, J. Puttur, J. Manniyodath, D. Chatterji and E.C. Coutinho. Med Chem., 15, 28 (2019).
33. Mannopyranoside glycolipids inhibit mycobacterial and biofilm growth and potentiate isoniazid inhibition activities in M. smegmatis. A. Mahapa, G. C. Samanta, K. Maiti, D. Chatterji and N. Jayaraman. Chembiochem., 20, 1966 (2019).
34. Sugar vinyl sulfoxide glycoconjugation of peptides and lysozyme: Abrogation of proteolysis at the lysine sites. B. Sarkar, A. Mahapa, D. Chatterji and N. Jayaraman. Biochemistry, (2019) doi: 10.1021/acs.biochem.9b00436.
35. Cyclic dinucleotide signaling in mycobacteria. A. Petchiappan, A. Mahapa and D. Chatterji. In “Cyclic Dinucleotide Signaling”. Springer publications. (in press) (2020).
36. Unravelling the role of silent mutation in - subunit of E. coli RNA polymerase: Structure transition inhibits transcription. U.R. Patel, S. Gautam and D. Chatterji. ACS Omega. 4, 17714-17728 (2019).
37. RelZ-mediated stress response in Mycobacterium smegmatis: pGpp synthesis and its regulation. A. Petchiappan, S. Y. Naik and D. Chatterji. J. Bacteriol., 202, e00444-19 (2020).
38. Small-Molecule Inhibition of Bacterial Biofilm. Ghosh, A., Jayaraman, N. and Chatterji, D. ACS omega, 5(7), 3108-3115 (2020).
39. Tracking the homeostasis of second messenger cyclic-di-GMP in bacteria. Petchiappan, A., Naik, S.Y. and Chatterji, D., Biophysical Reviews, 1-12 (2020).
40. Cyclic Dinucleotide Signaling in Mycobacteria. Petchiappan, A., Mahapa, A., and Chatterji, D. In Microbial Cyclic Di-Nucleotide Signaling, Springer. 3-25 (2020).
41. Tracking the homeostasis of second messenger cyclic-di-GMP in bacteria. Petchiappan A, Naik SY, Chatterji D. Biophys. Rev., 12(3) 719-730 (2020).
42. Pleiotropic effects of bacterial small alarmone synthetases: underscoring the dual-domain small alarmone synthetases in Mycobacterium smegmatis. Krishnan S, Chatterji D. Front. Microbiol., 11, 594024 (2020).
43. Validation of omega subunit of RNA polymerase as a functional entity. Patel, U. R., Gautam, S., and Chatterji, D., Biomolecules., 10:1588, (2020).
44. An Overview of Dps: dual acting nanovehicles in prokaryotes with DNA binding and ferroxidation properties. Williams, S.M., Chatterji, D., Subcell. Biochem., 96, 177-216, (2021).
45. Regulatory mechanisms of c‐di‐AMP synthase (MsDisA) protein from Mycobacterium smegmatis revealed by a structure–function analysis. Gautam, S., Mahapa, A., Yeramala, L., Gandhi, A., Krishnan, S., Vinothkumar, K.R. and Chatterji, D., Protein Science, p.e4568.
46. Aza-Michael promoted glycoconjugation of PETIM dendrimers and selectivity in mycobacterial growth inhibitions. Sarkar, B., Mahapa, A., Dey, K., Manhas, R., Chatterji, D. and Jayaraman, N., 2023. RSC advances, 13(7), 4669-4677.