摘要:随着生态环境和生物多样性保护理念的普及,社会各界对生物多样性的保护和管理越来越重视。但生物多样性本底状况不清,动态趋势不明对我们有效的开展生物多样性保护和管理工作提出了巨大挑战。如何快速地获取生物多样性的数据和评估生物多样性的分布格局是当前生物多样性保护和管理中的重要科学问题。鸟类作为生态系统的重要组成部分,在生态营养级中处于中高层,在环境稳定、生态平衡等方面都具有重要作用。鸟类对环境变化非常敏感,其种群数量与群落结构被认为是衡量生态系统状态的重要指标,可作为环境变化的指示物种。为此,我们对鸟类多样性的调查方法进行一个简要的介绍。通过样线法、样点法、红外相机调查法、无人机调查法、声音监测法等,对森林、湿地、草原等不同生境的鸟类进行快速调查以迅速掌握一个地区鸟类多样性的分布情况。
关键词: 鸟类多样性调查, 样线法, 样点法, 红外相机调查法, 声音监测法
实验步骤
鸟类多样性调查应按照调查对象的习性和生活环境的不同而选择合适的调查方法。为此,我们制定了森林鸟类、湿地鸟类、草原鸟类的调查方法。在湿地鸟类调查中,一般采用分区直数法。在草原鸟类调查中,一般采用样线法和样点法。在森林鸟类调查中,一般采用样线法、样点法、红外相机调查法和近期快速发展起来的声音监测法。除此之外,森林调查还需要调查人员提前熟悉相关鸟类的鸣声,因为森林调查视线常常被树林遮挡。由于不同的调查方法在研究目的、地点选择、时间长短、调查对象上有所不同,所以结合调查的目的和实际情况,选择合适的调查方法是顺利开展研究的重要保障。鸟类多样性调查的主要目的是迅速掌握一个地区鸟类多样性的分布情况。因此,需要对一个地区主要生境的鸟类进行快速调查,以便掌握本地区的鸟类多样性状况。这要求调查样线或者样方要尽可能涵盖不同的生境,不同样方的调查强度要接近,但一些鸟类丰富的地区,可以适当考虑提高调查的强度。而如果是针对某个类群或者某个物种进行种群数量和分布的专项调查,则需要对其主要分布的生境进行全覆盖的调查。
-
样线法
样线法是沿着预设路线进行不间断记录两侧一定距离范围内发现的鸟类,适用于快速的调查某个地区的鸟类物种多样性 (Anderson, 1993),具有调查范围大、调查效率高、方便开展等优点,在一些地势平坦和开阔的山谷和山脊便于运用。其缺点是不适用在一些地势陡峭的山区开展。
-
样点法
样点法是沿着预设样线进行有规则间断,并在每个断点上进行一定时间的持续记录。它既可以估算每种鸟的相对丰富度,又可以估算每种鸟的绝对密度,较适于在较大面积范围内开展鸟类数量调查,以及鸟类与栖息地间关系的研究。在样点法调查时,调查者沿着调查样线行走到达预先设定的样点后,定点定时地记录在一定半径范围内或所有看到和听到的鸟类个体。
-
标图法
标图法是以地图法研究鸟类数量方法的一种。在繁殖季节,许多鸟类可以通过鸣唱、炫耀、巡飞和斗争等行为获得其所需的领域。而拥有领域的鸟类个体需要保卫领域,往往只在领域附近活动。如果能通过在一定面积范围内的多次观察,并能将观察到的鸟类个体标绘在已知比例的调查样地方格地图上,那么就有可能通过辨识这些位点和标记来确定鸟类的繁殖领域。进一步将繁殖领域作为一种计数单位,估算样地内鸟类种群的绝对数量,这就是标图法。但这种方法的使用必须具备很多的假设条件,而每个假设都会对该结果产生影响,同时,标图法的使用还受到环境条件的限制,具有局限性。这种方法被较少的使用,在这里只做简单介绍。
-
分区直接计数法
根据地形、地貌或生境类型对整个观测区域进行分区,逐一统计各个分区中的鸟类种类和数量,得出观测区域内鸟类总种数和个体数量(图4)。调查时间可以选择一天当中的某一时间段,具体根据鸟类活动的稳定状况和天气情况确定。每次在观测点上观测20-25 min,每次计数重复3次,取最大值作为该次计数的结果。然后观测的时间段内,再进行两次计数,每次重复3次。即每个调查日共进行3次计数,取最大值作为该调查日的最终结果(陈佳萍, 2021)。
该方法适用于较小面积的草原或者湿地,主要应用于水鸟或其他集群鸟类的观测。在使用分区直数法的时候可以使用(表1)来记录观测数据。
图4.分区直数法示意图(引自陈佳萍, 2021)
表1. 分区直数法记录表
日期
|
|
天气
|
|
温度
|
|
观测者
|
|
记录者
|
|
样点编号
|
|
地点
|
|
海拔
|
|
经度
|
|
纬度
|
|
开始时间
|
|
生境类型
|
|
结束时间
|
|
人为干扰活动类型
|
|
人为干扰活动强度
|
|
潮汐状况
|
|
备注
|
|
总物种数
|
|
总个体数
|
|
物种名
|
数量
|
实体、活动、痕迹
|
海拔
|
经纬度
|
生境
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-
红外相机调查法
红外相机技术是红外触发相机陷阱技术的简称,该技术是指使用红外感应设备在无人在场操作的情况下,自动拍摄野生动物的静态照片或动态影像的技术与方法 (Cutler and Swann, 1999)。红外相机能够在野外24 h不间断地持续工作,不易受天气和地形等环境因子的影响,可以节省资金和人力,减少对动物的干扰等优点,红外相机对于地面及林下层活动的森林大中型鸟类以及夜行性和行为隐蔽鸟类的调查优势也比较明显 (O’Connell et al., 2010;李晟等, 2014;肖治术等, 2014),在我国生物多样性监测与野生动物研究中得到了广泛应用。近十年来,红外相机技术在我国鸟类多样性监测和区域性编目工作中具有重要的作用,可以提供高精度、高质量和大量鸟类物种分布数据。
-
无人机调查法
-
声音监测法
对上述鸟类调查方法的评价
开展鸟类资源的调查和监测工作,了解种群数量、群落组成和变化趋势,是制定鸟类保护对策以及评价保护策略有效性的重要依据。选择合适的调查方法是开展资源调查和监测工作的基础。本文对样线法、样点法、标图法、分区直接计数法、红外相机调查法、无人机调查法和声音监测法这7种鸟类调查方法进行了简要的介绍。
目前大部分对于鸟类的调查研究是在森林、草地、湖面、湿地上开展的。首先应依据调查区域的生境对调查方法进行选择。对于森林中的鸟类可以选择样线法、样点法、标图法、红外相机调查法和声音监测法。其中样线法和样点法是最常采用的鸟类调查方法。与其他鸟类调查方法相比,在对相同面积的区域进行调查时,样线法和样点法所花费的调查时间较少(蔡音亭, 2010)。分析样线法和样点法所获得的长期调查资料也可以了解鸟类种群数量的变化趋势(Verner, 1985)。样线法适宜于在广阔的、郁闭度低和较均质的栖息地和区域内进行鸟类调查,适宜于调查活动性强、个体较大或较显眼、易受惊的种类,且在种群密度和物种丰富度较低的情况下使用,以及在可进人性较好的栖息地内使用,并可较好地用于鸟类与栖息地关系的研究。样点法较适于在比较茂密的栖息地和种群密度及种类丰富度高的区域开展鸟类调查。由于该方法可使调查者有更多的时间去观察鸟类,并消除了调查者行走速度的影响,这不仅可增加鸟类的发现率,而且还使该方法较适于调查隐藏性较好、胆怯和具备躲避性的鸟类也同样适于在某些特殊地区 (如多岩地带等环境) 开展鸟类数量调查。
标图法虽然能准确获得调查样地内的鸟类的种群数量和密度,是一种准确度高、信息丰富的鸟类数量调查方法。但这种方法非常耗时、费钱且效率低。标图法不宜在大尺度范围进行鸟类数量调查。如果使用标图法也应该将其与寻巢、无线电遥测、雾网等方法结合使用(郑光美, 2017)。
目前红外相机法和声音监测法可以作为森林鸟类调查的有效补充调查方法。红外相机对鸟类的干扰性小,并且可以在不同天气下、全天任何时段持续对鸟类的监测,可以拍摄到隐藏性高和易受惊的鸟类,尤其对林下活动的鸟类的观测有突出作用,获取的影像资料还便于存档检索。红外相机拍摄到的数据在“标记-重捕”模型的理论框架下,能够对鸟类的种群大小和密度进行估算,但这需要研究者通过照片辨别出同种鸟类的不同个体(李晟, 2014)。虽然红外相机法在调查鸟类多样性时候也有自己的突出优势,但相对于样线法和样点法在同一片区域进行调查的时候,记录到的物种数量是远远低于样线法和样点法的(张倩雯, 2018)。红外相机拍摄到的鸟类的数量和鸟类的身体大小呈正相关,也就是红外相机在拍摄体型较小的鸟的时候不占优势。声音监测法是最近几年新起的鸟类调查方法。既可以通过对音频的解读直接分析出鸣叫的鸟类物种,也可以运用声景学的方法通过声景多样性分析方法直接分析该地区鸟类物种多样性。在郁闭度高的森林里声音监测法很好的解决了视野被遮挡无法观测到鸟类的问题,但是由于很多分析技术和方法现在尚未成熟,所以对所收集信息的后处理过程可能较为复杂。
在调查水鸟和草原鸟类的时候,可以选择样线法、分区直数法和无人机调查法。样线法可以选择步行调查或者乘船调查,优点同上面介绍样线法调查森林鸟类。步行调查的时候适用于在水岸边、湖滩上进行。缺点是当水面较为广阔的时候,样线法覆盖的调查区域面积范围较小,可能会遗漏远离湖岸边的鸟。并且在水岸的部分地区行走较为困难,在调查时需要注意安全。乘船调查虽然可以到达步行无法到达的水域,但是船只行驶可能会使调查的鸟类受惊,所以在乘船调查时尽量不要离鸟类太近。
分区直数法可以对整个调查区域的鸟类进行较详细的统计,但是要注意分区的区域界线,不要造成区域重复计数,或者有区域未覆盖的情况。
无人机成本低、易于携带、操作简单、飞行稳定,能精确遵循预定路线进行调查,同时可携带包括各种形式的遥感设备进行多种数据采集。当无人机在水面上方一定高度的时候,几乎不会对观测的鸟类产生影响,可以对调查区域的物种进行较好的监测,还能减轻长时间使用光学仪器所造成的视觉疲劳,克服传统野外调查方法周期长、时效差、难以大面积覆盖等缺点,从数据采集和处理等多方面推动鸟类多样性研究,提供强有力的技术支撑。但无人机调查现在所面临的问题是无人机续航时间短,很难一次性完成大面积长飞行样线的调查。而且无人机在工作的过程中,容易受到风力因素的影响,比如在调查的过程中被迫降低飞行高度,或者强制返航(郭庆华, 2016)。为了减少对拍摄对象的影响,无人机往往需要在距离地面一定高度进行拍摄。受到像素的限制,往往得到的拍摄对象是较为模糊的影像,需要通过实际情况进行解读,外形相似的物种可能无法得到准确辨认。
总之,每种鸟类调查方法都有不同的调查效果,且有各自的优势和特点。因此如果想要对调查区域的鸟类多样性进行充分彻底的调查,仅用单一的调查方法是不够的, 必须结合多种调查方法、用多种手段和技术才能达到较理想的效果。
致谢
本文得到“第二界青藏高原科学考察与研究”国家自然科学基金项目(STEP No.2019QZKK0501)的支持。感谢中国科学院昆明动物研究所吴飞和西南林业大学罗旭对本文提出的宝贵意见和建议。
参考文献
-
蔡音亭,干晓静,马志军.(2010).鸟类调查的样线法和样点法比较:以崇明东滩春季盐沼鸟类调查为例[J].生物多样性18(01):44-49.
-
陈道剑.(2019).广东省森林鸟类的样线有效宽度与分布格局[D].广西师范大学.
-
陈佳萍,王东,吴彤,赛青高娃,杨欣,连新明.(2021).青海省长江源区班德湖鸟类群落多样性研究[J].湿地科学19(02): 232-238.
-
李晟,王大军,肖治术,李欣海,王天明,冯利民,王云.(2014).外相机技术在我国野生动物研究与保护中的应用与前景. 生物多样性 22(06): 685-695.
-
刘鹏,付明霞,齐敦武,宋心强,韦伟,杨琬婧,陈玉祥,周延山,刘家斌,马锐,余吉,杨洪,陈鹏,侯蓉.(2020).用红外相机监测四川大相岭自然保护区鸟兽物种多样性[J].生物多样性28(07):905-912.
-
高大中,林海,林乐乐,崔国发.(2021).利用小型无人机监测西洞庭湖水鸟的可行性探讨[J].动物学杂志56(01): 100-110.
-
黄娟琴. (2005).杭州市区湿地资源遥感调查与监测研究[D]. 浙江大学.
-
郭庆华,吴芳芳,胡天宇.(2016).无人机在生物多样性遥感监测中的应用现状与展望[J].生物多样性11:1267-1268.
-
刘辉,姜广顺,李惠.(2015).北方冬季有蹄类动物4种数量调查方法的比较[J].生态学报35(09): 3076-3086.
-
王燕,何兴成,张尚明玉,张怡田,何倩芸,王贝爻,王彬,宋心强,付明霞,朱敏,吴永杰.(2021).四川荥经大相岭繁殖期鸟类多样性与群落结构[J]. 四川动物40(03): 344-360.
-
吴飞,杨晓君.样点法在森林鸟类调查中的运用[J].(2008).生态学杂志27(12): 2240-2244.
-
许龙,张正旺,丁长青.(2003).样线法在鸟类数量调查中的运用.生态学杂志 (05): 127-130.
-
肖治术,李欣海,王学志,周岐海,权锐昌,申小莉,李晟.(2014).探讨我国森林野生动物红外相机监测规范.生物多样性22(06):704-711.
-
余建平,王江月,肖慧芸,陈小南,陈声文,李晟,申小莉.(2019).利用红外相机公里网格调查钱江源国家公园的兽类及鸟类多样性.生物多样性27(12):1339-1344.
-
张小伟,何欢,王柯.(2020).可变距离样线法在浙闽沿海丘陵单元森林鸟类调查中的应用.华东森林经理 34(02):31-34.
-
周雯慧,朱京海,刘合鑫,刘冬烨,问鼎.(2018).湿地鸟类调查方法概述.野生动物 039(003):588-593.
-
赵莹,申小莉,李晟,张雁云,彭任华,马克平.(2020).声景生态学研究进展和展望.生物多样性28(7): 806.
-
郑光美. (1995). 鸟类学. 北京:北京师范大学出版社498-512.
-
张倩雯,龚粤宁,宋相金,王新财,杨昌腾,束祖飞,邹发生.红外相机技术与其他几种森林鸟类多样性调查方法的比较[J].生物多样性,2018,26(03):229-237.
-
Abd-Elrahman, A., Pearlstine, L. and Percival, F. (2005). Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surveying and Land Information Science 65(1): 37-45.
-
Anderson, D.R., Burnham, K.P. and Laake, J.L. (1993). Distance sampling: estimating abundance of biological populations. Chapman &Hall, London, United Kingdom.
-
Bibby, C.J., Burgess, N.D., Hill, D.A., Hillis, D. M. and Mustoe, S. (2000). Bird census techniques. Elsevier.
-
Browning, E., Gibb, R., Glover-Kapfer, P. and Jones, K. E. (2017). Passive acoustic monitoring in ecology and conservation. WWF Conservation Technology Series 1(2).
-
Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L. (1993). Distance sampling: estimating abundance of biological populations. London: Chapman & Hall 446.
-
Burivalova, Z., Game, E.T., Butler, R.A. (2019). The sound of a tropical forest. Science 363(6422): 28-29.
-
Burnham, K.P., Anderson, D.R. and Laake, J.L. (1980). Estimation of density from line transect sampling of biological populations. Wildlife Monographs 72: 1-202.
-
Chabot, D. and Bird, D.M. (2012). Evaluation of an off-the-shelf unmanned aircraft system for surveying flocks of geese. Waterbirds 35(1): 170-174.
-
Cutler, T.L. and Swann, D.E. (1999). Using remote photography in wildlife ecology: a review. Wildlife Society Bulletin 571-581.
-
Doser, J.W., Finley, A.O., Weed, A.S. and Zipkin, E.F. (2021). Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance. Methods in Ecology and Evolution 00: 1– 10.
-
Fuller, R.J. and Langslow, D.R. (1984). Estimating numbers of birds by point counts: how long should counts last? Bird study 31(3): 195-202.
-
Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., Depraetere, M. and Pavoine, S. (2013). Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators 25: 279-287.
-
Hill, A.P., Prince, P., Covarrubias, E.P., Doncaster, C.P., Snaddon, J.L. and Rogers, A. (2018). AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution 9(5): 1199-1211.
-
Jones, G., Pearlstine, L. and Percival, H. (2006). An assessment of small unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin 34(3): 750-758.
-
Lomolino, M.V., Pijanowski, B.C., Gasc, A. (2015). The silence of biogeography. Journal of Biogeography 42(7): 1187-1196.
-
O'Connell, A. F., Nichols, J. D. and Karanth, K. U. (2010).Camera traps in animal ecology: methods and analyses. Springer Science & Business Media.
-
Ovaskainen, O., Moliterno de Camargo, U. and Somervuo, P. (2018). Animal Sound Identifier (ASI): software for automated identification of vocal animals. Ecology letters 21(8): 1244-1254.
-
Pérez‐Granados, C. and Traba, J. (2021). Estimating bird density using passive acoustic monitoring: a review of methods and suggestions for further research. Ibis.
-
Pijanowski, B.C., Villanueva-Rivera, L.J.,Dumyahn, S.L., Almo, F., Krause, B.L., Napoletano, B.M., Gage, S.H. and Nadia, P. (2011). Soundscape ecology: The science of sound in the landscape. BioScience 61(3): 203–216.
-
Rajan, S.C., Athira, K., Jaishanker, R., Sooraj, N.P. and Sarojkumar, V. (2019). Rapid assessment of biodiversity using acoustic indices. Biodiversity and Conservation 28(8): 2371-2383.
-
Richard, B.H. and Kenneth, P.B. (2002). 关于使用样线法估计种群密度. 动物学报 06: 812-818.
-
Dan, S., and Sueur, J. (2020). Ecoacoustics: acoustic sensing for biodiversity monitoring at scale. Remote Sensing in Ecology and Conservation 6(3): 217-219.
-
Thompson, F. R. and Schwalbach, M. J. (1995). Analysis of sample size, counting time, and plot size from an avian point count survey on Hoosier National Forest, Indiana. In: Ralph C.J., Sauer J.R. and Droege S. (eds), Monitoring Bird Populations by Point Counts Gen. Tech. Rep. PSW-GTR-149. USDA Forest Serv. Pac. Southwest Res. Sta., Albany, California, USA, pp. 45-48.
-
Watts, A.C., Perry, J.H., Smith, S.E., Burgess, M.A., Wilkinson, B.E., Szantoi, Z., Ifju, P.G. and Percival, H.F. (2010). Small unmanned aircraft systems for low-altitude aerial surveys. Journal of Wildlife Management 74(7): 1614-1619.
-
Pijanowski B C, Farina A, Gage S H, et al. (2011). What is soundscape ecology? An introduction and overview of an emerging new science.Landscape ecology 26(9): 1213-1232.
-
Vener, J. and Ritter, L.V. (1985). A comparison of transects and point counts in oak-pine woodlands of California. The Condor 87(1): 47-68.
Copyright: © 2021 The Authors; exclusive licensee Bio-protocol LLC.