神经科学


分类

现刊
往期刊物
0 Q&A 1363 Views Feb 20, 2024

Astrocytes are increasingly recognized for their important role in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). In ALS, astrocytes shift from their primary function of providing neuronal homeostatic support towards a reactive and toxic role, which overall contributes to neuronal toxicity and cell death. Currently, our knowledge on these processes is incomplete, and time-efficient and reproducible model systems in a human context are therefore required to understand and therapeutically modulate the toxic astrocytic response for future treatment options. Here, we present an efficient and straightforward protocol to generate human induced pluripotent stem cell (hiPSC)-derived astrocytes implementing a differentiation scheme based on small molecules. Through an initial 25 days, hiPSCs are differentiated into astrocytes, which are matured for 4+ weeks. The hiPSC-derived astrocytes can be cryopreserved at every passage during differentiation and maturation. This provides convenient pauses in the protocol as well as cell banking opportunities, thereby limiting the need to continuously start from hiPSCs. The protocol has already proven valuable in ALS research but can be adapted to any desired research field where astrocytes are of interest.


Key features

• This protocol requires preexisting experience in hiPSC culturing for a successful outcome.

• The protocol relies on a small molecule differentiation scheme and an easy-to-follow methodology, which can be paused at several time points.

• The protocol generates >50 × 106 astrocytes per differentiation, which can be cryopreserved at every passage, ensuring a large-scale experimental output.


Graphical overview


0 Q&A 490 Views Feb 20, 2024

Dopaminergic (DAergic) neurodegeneration in the substantia nigra pars compacta of the human brain is the pathological feature associated with Parkinson’s disease (PD). Drosophila also exhibits mobility defects and diminished levels of brain dopamine on exposure to neurotoxicants mimicking PD. Our laboratory demonstrated in a Drosophila model of sporadic PD that there is no decrease in DAergic neuronal number; instead, there is a significant reduction in tyrosine hydroxylase (TH) fluorescence intensity (FI). Here, we present a sensitive assay based on the quantification of FI of the secondary antibody (ab). As the FI is directly proportional to the amount of TH synthesis, its reduction under PD conditions denotes the decrease in the TH synthesis, suggesting DAergic neuronal dysfunction. Therefore, FI quantification is a refined and sensitive method to understand the early stages of DAergic neurodegeneration. FI quantification is performed using the ZEN 2012 SP2 single-user software; a license must be acquired to utilize the imaging system to interactively control image acquisition, image processing, and analysis. This method will be of good use to biologists, as it can also be used with little modification to characterize the extent of degeneration and changes in the level of degeneration in response to drugs in different cell types. Unlike the expensive and cumbersome confocal microscopy, the present method will be an affordable option for fund-constrained neurobiology laboratories.


Key features

• Allows characterizing the incipient DAergic and other catecholaminergic neurodegeneration, even in the absence of loss of neuronal cell body.

• Great alternative for the fund-constrained neurobiology laboratories in developing countries to utilize this method in different cell types and their response to drugs/nutraceuticals.


Graphical overview


0 Q&A 399 Views Oct 5, 2023

Many single nucleotide polymorphisms (SNPs) identified by genome-wide association studies exert their effects on disease risk as expression quantitative trait loci (eQTL) via allele-specific expression (ASE). While databases for probing eQTLs in tissues from normal individuals exist, one may wish to ascertain eQTLs or ASE in specific tissues or disease-states not characterized in these databases. Here, we present a protocol to assess ASE of two possible target genes (GPNMB and KLHL7) of a known genome-wide association study (GWAS) Parkinson’s disease (PD) risk locus in postmortem human brain tissue from PD and neurologically normal individuals. This was done using a sequence of RNA isolation, cDNA library generation, enrichment for transcripts of interest using customizable cDNA capture probes, paired-end RNA sequencing, and subsequent analysis. This method provides increased sensitivity relative to traditional bulk RNAseq-based and a blueprint that can be extended to the study of other genes, tissues, and disease states.


Key features

• Analysis of GPNMB allele-specific expression (ASE) in brain lysates from cognitively normal controls (NC) and Parkinson’s disease (PD) individuals.

• Builds on the ASE protocol of Mayba et al. (2014) and extends application from cells to human tissue.

• Increased sensitivity by enrichment for desired transcript via RNA CaptureSeq (Mercer et al., 2014).

• Optimized for human brain lysates from cingulate gyrus, caudate nucleus, and cerebellum.


Graphical overview


0 Q&A 476 Views Dec 5, 2022

Pavlovian fear conditioning is a widely used procedure to assess learning and memory processes that has also been extensively used as a model of post-traumatic stress disorder (PTSD). Freezing, the absence of movement except for respiratory-related movements, is commonly used as a measure of fear response in non-human animals. However, this measure of fear responses can be affected by a different baseline of locomotor activity between groups and/or conditions. Moreover, fear conditioning procedures are usually restricted to a single conditioned stimulus (e.g., a tone cue, the context, etc.) and thus do not depict the complexity of real-life situations where traumatic memories are composed of a complex set of stimuli associated with the same aversive event. To overcome this issue, we use a conditioned lick suppression paradigm where water-deprived mice are presented with a single conditioned stimulus (CS, a tone cue or the context) previously paired with an unconditioned stimulus (US, a foot shock) while consuming water. We use the ratio of number of licks before and during the CS presentation as a fear measure, thereby neutralizing the potential effect of locomotor activity in fear responses. We further implemented the conditioned lick suppression ratio to assess the effect of cue competition using a compound of contextual and tone cue conditioned stimuli that were extinguished separately. This paradigm should prove useful in assessing potential therapeutics and/or behavioral therapies in PTSD, while neutralizing potential confounding effects between locomotor activity and fear responses on one side, and by considering potential cue-competition effects on the other side.


Graphical abstract



Schematic representation of the compound context-cue condition lick suppression procedure. Illustration reproduced from Bouchekioua et al. (2022).


0 Q&A 708 Views Oct 5, 2022

Late-gestation transient intrauterine hypoxia is a common cause of birth injury. It can lead to long-term neurodevelopmental disabilities even in the absence of gross anatomic injury. Currently, postnatal models of hypoxia–ischemia are most commonly used to study the effect of oxygen deprivation in the fetal brain. These models, however, are unable to take into account placental factors that influence the response to hypoxia, exhibit levels of cell death not seen in many human patients, and are unable to model preterm hypoxia. To address this gap in research, we have developed a protocol to induce transient hypoxia in fetal mice. A pregnant dam at gestational day 17.5 is placed into a hypoxia chamber. Over 30 min, the inspired oxygen is titrated from 21% (ambient air) to 5%. The dam remains in the chamber for up to 8 h, after which fetal brains can be collected or pups delivered for postnatal studies. This protocol recapitulates phenotypes seen in human patients exposed to transient in utero hypoxia and is readily reproducible by researchers.


Graphical abstract:




0 Q&A 1925 Views Aug 5, 2022

In mice, microglial precursors in the yolk sac migrate to the brain parenchyma through the head neuroepithelial layer between embryonic days 8.5 (E8.5)–E16.5 and acquire their unique identity with a ramified form. Based on the microglial developmental process, we dissected the neuroepithelial layer (NEL) of E13.5 mice, which is composed of microglial progenitor and neuroepithelial cells. The NEL was bankable and expandable. In addition, microglial precursors were matured according to NEL culture duration. The matured microglia (MG; CD11b-positive cells) were easily isolated from the cultured NEL using a magnetic-activated cell sorting system and named NEL-MG. In conclusion, we obtained higher yields of adult-like microglia (mature microglia: NEL-MG) compared to previous in vitro surrogates such as neonatal microglia and microglial cell lines.


Graphical abstract:




0 Q&A 1541 Views Aug 5, 2022

There is an urgent need for the development of brain drug delivery carriers based on middle-sized or macromolecules, to which in vitro blood-brain barrier (BBB) models are expected to contribute significantly through evaluation of BBB permeability. As part of efforts to develop such models, we have been working on human conditionally immortalized cell-based multicellular spheroidal BBB models (hiMCS-BBB models), and we herein introduce the model development protocol. Briefly, astrocytes are first seeded in an ultra-low attachment 3D cell culture plate, to make the central core (Day 0). Next, pericytes are added over the core, to form an outer layer (Day 1). Then, brain microvascular endothelial cells are further added to each well, to create the outmost monolayer serving as the BBB (Day 2). Finally, the spheroids cultured for two days (on Day 4) can be used for assays of interest (e.g., antibody permeability assays). Neither special equipment nor techniques are required to produce hiMCS-BBB models. Therefore, the protocol presented here will not only facilitate the model sharing among the BBB community but also provide some technical clues contributing to the development of similar MCS-BBB models using other cell sources, such as primary or iPS-derived BBB cells.


Graphical abstract:




0 Q&A 1771 Views Jul 20, 2022

To optimize differentiation protocols for stem cell-based in vitro modeling applications, it is essential to assess the change in gene expression during the differentiation process. This allows controlling its differentiation efficiency into the target cell types. While RNA transcriptomics provides detail at a larger scale, timing and cost are prohibitive to include such analyses in the optimization process. In contrast, expression analysis of individual genes is cumbersome and lengthy.


Here, we developed a versatile and cost-efficient SYBR Green array of 27 markers along with two housekeeping genes to quickly screen for differentiation efficiency of human induced pluripotent stem cells (iPSCs) into excitatory cortical neurons. We first identified relevant pluripotency, neuroprogenitor, and neuronal markers for the array by literature search, and designed primers with a product size of 80-120 bp length, an annealing temperature of 60°C, and minimal predicted secondary structures. We spotted combined forward and reverse primers on 96-well plates and dried them out overnight. These plates can be prepared in advance in batches and stored at room temperature until use. Next, we added the SYBR Green master mix and complementary DNA (cDNA) to the plate in triplicates, ran quantitative PCR (qPCR) on a Quantstudio 6 Flex, and analyzed results with QuantStudio software.


We compared the expression of genes for pluripotency, neuroprogenitor cells, cortical neurons, and synaptic markers in a 96-well format at four different time points during the cortical differentiation. We found a sharp reduction of pluripotency genes within the first three days of pre-differentiation and a steady increase of neuronal markers and synaptic markers over time. In summary, we built a gene expression array that is customizable, fast, medium-throughput, and cost-efficient, ideally suited for optimization of differentiation protocols for stem cell-based in vitro modeling.


0 Q&A 1179 Views May 20, 2022

Repeat expansion diseases, including fragile X syndrome, Huntington’s disease, and C9orf72-related motor neuron disease and frontotemporal dementia, are a group of disorders associated with polymorphic expansions of tandem repeat nucleotide sequences. These expansions are highly repetitive and often hundreds to thousands of repeats in length, making accurate identification and determination of repeat length via PCR or sequencing challenging. Here we describe a protocol for monitoring repeat length in Drosophila models carrying 1,000 repeat C9orf72-related dipeptide repeat transgenes using Southern blotting. This protocol has been used regularly to check the length of these lines for over 100 generations with robust and repeatable results and can be implemented for monitoring any repeat expansion in Drosophila.

0 Q&A 2163 Views Apr 20, 2022

Targeting receptor-mediated transcytosis (RMT) is a successful strategy for drug delivery of biologic agents across the blood-brain barrier (BBB). The recent development of human BBB organoid models is a major advancement to help characterize the mechanisms of RMT and thus accelerate the design of brain delivery technologies. BBB organoids exhibit self-organization, which resembles the architecture of the neurovascular unit, and low paracellular permeability, due to the formation of tight junctions between endothelial cells. However, current methods of organoid generation have low throughput, exhibit substantial heterogeneity across experiments, and require extensive manual handling. These limitations prevent the use of BBB organoids as a screening tool for discovery and optimization of therapeutic molecules. In this protocol, we use hydrogel-based arrays to generate human BBB organoids, with a 35-fold increase in organoid yield as compared to previous protocols using 96-well plates. We incubate BBB organoid arrays with monoclonal antibody-based constructs and use a custom semi-automated imaging assay to assess RMT within the organoid core. The experimental and analytical tools described in this protocol provide a scalable platform that can be incorporated in the early stages of drug discovery to accelerate the development and optimization of brain delivery technologies to cross the BBB.